Abstract:
The invention relates to a method for manufacturing a mineral fiber-containing composite and the novel mineral fiber-containing element produced by that method.
Abstract:
The invention relates to a method for manufacturing a mineral fibre-containing composite and the novel mineral fibre-containing element produced by that method.
Abstract:
A device for compacting fiber flocks into a flock mat has means for supplying the fiber flocks, a discharge belt for carrying the compacted flock mat away, and walls, which are arranged opposite each other between the means for supplying the fiber flocks and the discharge belt and thus form the boundaries of an essentially vertical chute feed, which defines the transport direction of the fiber flocks. At least one of the walls is supported in such a way that its movement during each cycle has a component in the transport direction of the fiber flocks and a component in the direction transverse to the transport direction.
Abstract:
A device for compacting fiber flocks into a flock mat has means for supplying the fiber flocks, a discharge belt for carrying the compacted flock mat away, and walls, which are arranged opposite each other between the means for supplying the fiber flocks and the discharge belt and thus form the boundaries of an essentially vertical chute feed, which defines the transport direction of the fiber flocks. At least one of the walls is supported in such a way that its movement during each cycle has a component in the transport direction of the fiber flocks and a component in the direction transverse to the transport direction.
Abstract:
An arrangement for forming a fiber web in which fibers are compacted while remaining evenly distributed through the upper and lower surfaces. The arrangement includes a cabinet for receiving opened and blending fibers, and a fiber web forming chute receiving the fibers from the cabinet. The forming chute includes an upper and a lower wall which engage with and assist with the movement of the fibers through and out of the web forming chute. A packing member is positioned adjacent the exit end, engages with and compresses the emerging fiber web to a desired density and height. An air flow system acts to pass a flow of air through the chute from its entrance. The flow of air engages with the fibers during their passage through the chute. The air flow system includes an air removal system which is located in the upper wall and the packing member. The removal system causes the air to exit the web forming chute upwardly, passing through the web. The air flow engages with fibers forming the web, maintaining the various size fibers evenly distributed throughout the web.
Abstract:
An arrangement for forming non-woven fiber fabrics or webs having high resilience and loft with substantially equal fiber orientation in all directions and substantially equal fiber density throughout. The arrangement includes a fiber web forming chute having upper and lower walls arranged in a substantially upright position. Each of the upper and lower wall includes a fiber movement assist mechanism which acts to assist movement of the fibers toward the exit end of the forming chute in a manner which assists in the control of the fiber orientation and the density of the fiber web being formed. The arrangement further includes an air flow mechanism which directs an air flow through the forming chute during the forming operation. The air flow may or may not be treated.
Abstract:
An apparatus for forming a non-woven fiber baft of fibrous material which includes a housing connecting with a plurality of feed chutes which feed fibers from a plurality of sources into a mixing chamber. Feed rolls, adjacent each discharge end of the feed chutes, are driven at selected speeds to withdraw fibers from the feed chutes at selected rates. A combing roll within the mixing chamber acts to assist the fibers from the mixing chamber into a beater chamber where they are further blended and opened. From the beater chamber the fibers move into a batt forming chute where they are formed into a fiber batt. The batt forming chute includes a packing belt and a vibrating assembly each driven at selected speeds to compact the fibers into a fiber batt of desired density. Volume dependent controls within the batt forming chute act to control the rate of the feed rolls and the beater roll while weight or density dependent controls outside the batt forming chute act to control the rate of the packing belt and the vibrating assembly.
Abstract:
A throttle valve is provided within a discharge air duct located adjacent a fiber duct receiving a fiber laden air stream. The throttle valve cooperates with a stop in a lowered position to form a gap to allow a minimal air flow therethrough. In addition, a weight is provided on an arm attached to the throttle valve for pivoting therewith. The weight is disposed to counterbalance a substantial portion of the weight of the flap valve in the raised position of the valve so that the air flow maintains the valve in the open condition.
Abstract:
An apparatus for depositing loose materials, such as insulation or fireproofing in worksite areas, may be used for depositing a single or premixed loose material. Alternatively, the apparatus may be used both for combining two constituent loose materials to form a composite loose material and for depositing the composite loose material in a worksite area. The apparatus includes a separate hopper or bin for each of the constituent loose materials. Each hopper is operatively connected to a single loose material combining channel for supplying their respective constituent loose material for forming the composite loose material immediately before it is deposited in the worksite area. A single motor is used for supplying both constituent loose materials to the combining channel. The ratio of constituent loose materials in the composite loose material may be changed by replacing an easily accessible gear used in driving an auger for extracting the constituent loose material from one of the hoppers. In replacing this gear with a different sized gear, and thereby changing the ratio of constituent loose materials in the composite loose material, the hopper having the auger may be rotated to disengage the gear from a drive train, the gear is then replaced, and the hopper is rotated in the opposite direction until the replacement gear engages the drive train.