Abstract:
The present invention provides an optical phase modulation evaluating device that can measure and evaluate the precise degree of modulation in phase of an optical phase modulation signal in comparison with the conventionally-known optical phase modulation evaluating device. The optical phase modulation evaluating module includes: a bit delay device located on optical paths of the third and fifth light beams, and adapted to change the length of the optical paths to delay the third and fifth light beams by one bit per second; and an optical phase difference setting means for delaying either or both the ninth and tenth light beams by a designated phase angle which is not equal to zero, the optical phase difference setting means having a light transmissive plate located on an optical path for the ninth light beam, and a light transmissive plate located on an optical path for the tenth light beam.
Abstract:
An analysis method for use in a radiation imaging apparatus employing intensity information of interference fringes of radiation rays that have passed through a detected object includes the steps of generating first phase information of the detected object wrapped into a range of 2π from the intensity information of the interference fringes; generating information on an absorption intensity gradient of the detected object from the intensity information of the interference fringes; generating a weighting function on the basis of an absolute value of a gradient in the information on the absorption intensity gradient; and generating second phase information by unwrapping the first phase information by using the weighting function.
Abstract:
A measurement method for measuring a wavefront aberration of a target optical system using a measurement apparatus that measures the wavefront aberration of the target optical system by detecting an interference pattern includes the steps of measuring as a system parameter a shift from a design value of a value that defines a structure of the measurement apparatus and the target optical system, and measuring the wavefront aberration of the target optical system using the system parameter.
Abstract:
A method for approximating an influence of an optical system on the state of polarization of optical radiation comprises the steps of providing incoming optical radiation for the optical system in several incoming states of polarization, including at least one incoming state having circularly polarized radiation components; directing the incoming optical radiation onto the optical system; measuring at least one characteristic, including a phase distribution, of a resulting outgoing optical radiation emerging from the optical system with respect to each of the incoming states of polarization; and approximating the influence of the optical system on the state of polarization of optical radiation by evaluating the measured characteristics of the outgoing optical radiation.
Abstract:
An object of the invention is to provide a phase object identification device and method which can identify a phase object in a completely different manner from conventional methods for observing or measuring a phase object.A phase object identification device 1 for identifying a phase object for changing the phase of light includes a light source 2, a sample holding means 3 for holding a phase object 31 to be identified, a holographic recording medium 4 on which a hologram 41 formed by interference between reference light 25 and object light 24 that is phase-modulated by a known phase object 32 is recorded, and a light detector 5, a phase of light 21 emitted from the light source is modulated by the phase object to be identified to generate sample light 22, the hologram of the holographic recording medium is irradiated with the sample light, reproduced light 23 reproduced from the hologram of the holographic recording medium is detected by the light detector.
Abstract:
Method for determining a perturbation of an optical wave, wherein a first wave which has been subject to a perturbation, is caused to interfere with a second adaptive and continuously adjustable wave, used as a reference wave, in order to obtain a set of interference fringes, the phase of the first wave is reconstructed from this set, and the perturbation is determined from the thereby reconstructed phase. The shape of the wavefront of the second wave is dynamically adjusted so as to obtain a number of interference fringes adapted to the reconstruction of the phase.
Abstract:
It is an object of the present invention to provide an optical phase modulation evaluating device that can measure and evaluate the precise degree of modulation in phase of an optical phase modulation signal in comparison with the conventionally-known optical phase modulation evaluating device. The optical phase modulation evaluating module includes: a bit delay device located on optical paths of the third and fifth light beams, and adapted to change the length of the optical paths to delay the third and fifth light beams by one bit per second; and an optical phase difference setting means for delaying either or both the ninth and tenth light beams by a designated phase angle which is not equal to zero, the optical phase difference setting means having a light transmissive plate located on an optical path for the ninth light beam, and a light transmissive plate located on an optical path for the tenth light beam.
Abstract:
In a method of measuring a phase of a phase shift mask, initial extreme ultraviolet (EUV) light is divided into secondary EUV light portions. The secondary EUV light portions are irradiated onto the phase shift mask as incident EUV light portions, and the phase of the phase shift mask is measured from reflected incident EUV light portions.
Abstract:
A wavefront measuring method includes steps of: obtaining a first transmitted-wavefront from a first image formed by transmitting beam through a substance at a first angle; obtaining a second image formed by transmitting the beam through the substance at a second angle; formulating a mask corresponding to an interference degree of the second image; converting the first transmitted-wavefront to match with a temporary second transmitted-wavefront from the second image; and unwrapping from the second image, the mask, and a converted first transmitted-wavefront to obtain a second transmitted-wavefront by transmitting the beam through the substance at the second angle.
Abstract:
An optical nonlinear evaluation device (1) capable of accurately evaluating the optical nonlinearity of a Kerr medium in accordance with a phase difference caused by cross-phase modulation generated in the Kerr medium includes: a polarization Sagnac interference path (3) provided with a Kerr medium (4); an optical pulse light source (7) for supplying a signal beam (Dsig); a polarization beam splitter (PBS1) for splitting the signal beam (Dsig) into a signal beam (Hsig) and a signal beam (Vsig) polarized in a direction orthogonal to the signal beam (Hsig), for supplying the signal beam (Hsig) to a first side of the Kerr medium (4), and for supplying the signal beam (Vsig) to a second side of the Kerr medium (4); a glass plate (14) for entering, onto the signal beam (Hsig), a control beam (Vcont) for causing a change in phase difference between the signal beam (Hsig) and the signal beam (Vsig); separating means for separating the control beam (Vcont) from the signal beam (Hsig) having traveled through the Kerr medium (4); and a detection section (10) provided so as to detect the phase difference between the signal beam (Hsig) and the signal beam (Vsig).