Abstract:
A method and accompanying apparatus for automatically extending the linear dynamic absorbance range of absorbance detectors including multi-lightpath flow cells. The absorbance of a reference beam in a relatively short reference path is multiplied by a ratio of the absorbance of a sample beam in a relatively long sample path to the reference path absorbance in developing a relative absorbance for the sample path beyond its linear dynamic range.
Abstract:
In a spectroscopically operating infrared hygrometer, beams emitted by the beam source and formed by the lens arrangement disposed in front thereof, are reflected via two pairs of rotating lenses, fixed in two parallel planes which are at a fixed distance from each other, and via a fixed mirror, to the lens arrangement placed in front of the detector and are directed by this lens arrangement to the detector. In this infrared hygrometer the absorption distance change takes place very rapidly, so that it is possible during measurements over longer perids of time, for example, during measurements taken from an airplane, to relate with small time constants the individual measurement values for the two absorption distances continuously. Furthermore, intermediate calibration is not required with this infrared hygrometer.
Abstract:
Systems and methods for verifying that light absorption is caused by a targeted gaseous chemical compound. A first transmittance of light, either generated at, or filtered to, a first wavelength range and a second transmittance of light, either generated at, or filtered to, a second wavelength range are measured by first and second photon detectors. A ratio of the first and second measured transmittance is determined and that ratio is compared to a transmittance ratio associated with a targeted gaseous chemical compound to verify that the light absorption is caused by the targeted gaseous chemical compound.
Abstract:
A device for recording an absorption spectrum of a fluid has a radiation source (1) that emits a radiation in a spectral range along a beam path (11), a measuring path (5), along which the radiation passes through the fluid and arranged in the beam path, a tunable Fabry-Perot interferometer (7), arranged in the beam path and transmitting radiation in the spectral range as a displaceable bandpass filter, and a detector (9, 35) measuring the intensity of the radiation in the spectral range. An etalon (3) is arranged for spectral modulation of radiation in the beam path and has a plurality of transmission maxima (17) in the spectral range. The bandpass filter, formed by the Fabry-Perot interferometer (7), is displaceable across the spectral range such that spectral modulation of the radiation by the etalon (3) is measured by the detector (9, 35) as a modulation of radiation intensity over time.
Abstract:
A nephelometer for determining the turbidity of a body of fluid in which a light beam is directed as an angled beam through the body and two light detectors measure the intensity of light scatter at two points in the beam. The two measurements are divided and scaled, and then the result is logarithmically amplified and displayed as the turbidity.
Abstract:
A sensing system and method for sensing a component in a liquid is disclosed. The system comprises a microfluidic channel, the microfluidic channel comprising a first end and a second end, wherein the microfluidic channel is open at the first end and closed at the second end. The system also comprises at least one measurement sensor positioned adjacent the first end, the measurement sensor being arranged for detecting a measurement signal and a reference sensor positioned in the microfluidic channel adjacent the second end, the reference sensor being arranged for detecting a reference signal of the liquid. The system further is configured for combining the measurement signal and the reference signal so as to filter out background influences.
Abstract:
A method is used to determine an absorption behavior of a medium. The method includes establishing an absorption coefficient of the medium using a first intensity value and at least one second intensity value and a length different between a first measurement distance and a second measurement distance. The first intensity value represents a measured first light intensity after passing over a first measurement distance in the medium. The second intensity value represents a measured second light intensity after passing over a second measurement distance in the medium. The first intensity value and the second intensity value are measured using light with a common initial intensity.
Abstract:
A device for recording an absorption spectrum of a fluid has a radiation source (1) that emits a radiation in a spectral range along a beam path (11), a measuring path (5), along which the radiation passes through the fluid and arranged in the beam path, a tunable Fabry-Perot interferometer (7), arranged in the beam path and transmitting radiation in the spectral range as a displaceable bandpass filter, and a detector (9, 35) measuring the intensity of the radiation in the spectral range. An etalon (3) is arranged for spectral modulation of radiation in the beam path and has a plurality of transmission maxima (17) in the spectral range. The bandpass filter, formed by the Fabry-Perot interferometer (7), is displacable across the spectral range such that spectral modulation of the radiation by the etalon (3) is measured by the detector (9, 35) as a modulation of radiation intensity over time.
Abstract:
A closed path infrared sensor includes an enclosure, a first energy source within the enclosure, at least a second energy source within the enclosure, at least one detector system within the enclosure and a mirror system external to the enclosure and spaced from the enclosure. The mirror system reflects energy from the first energy source to the at least one detector system via a first analytical path and reflects energy from the second energy source to the at least one detector system via a second analytical path. Each of the first analytical path and the second analytical path are less than two feet in length.
Abstract:
A closed path infrared sensor includes an enclosure, a first energy source within the enclosure, at least a second energy source within the enclosure, at least one detector system within the enclosure and a mirror system external to the enclosure and spaced from the enclosure. The mirror system reflects energy from the first energy source to the at least one detector system via a first analytical path and reflects energy from the second energy source to the at least one detector system via a second analytical path. Each of the first analytical path and the second analytical path are less than two feet in length.