Abstract:
A surface plasmon resonance sensor or critical angle sensor has a reflecting surface which is optically flat and exposed to air on one side. Light reflecting from a sensing surface of the sensor which impinges on the reflecting surface at an angle which is less than the critical angle passes into the air whereas light which impinges at an angle which is equal to or greater than the critical angle is reflected onto a photodetector. The critical angle reflection from the reflecting surface provides a total internal reflection (TIR) characteristic which is used to calibrate the sensor.
Abstract:
A surface plasmon resonance sensor or critical angle sensor has a reflecting surface which is optically flat and exposed to air on one side. Light reflecting from a sensing surface of the sensor which impinges on the reflecting surface at an angle which is less than the critical angle passes into the air whereas light which impinges at an angle which is equal to or greater than the critical angle is reflected onto a photodetector. The critical angle reflection from the reflecting surface provides a total internal reflection (TIR) characteristic which is used to calibrate the sensor.
Abstract:
A method and a device for measuring the characteristics of a sample by spectral analysis. According to the method, the characteristics are calculated from the spectral data obtained by the spectral analysis, using a calibration model that has been established on the basis of reference samples. In order to improve the stability of the measuring process, an additional calculation of the characteristics (16) of the samples (1) takes place, using at least one additional calibration model (14) that has been established on the basis of additional reference samples (1null). Deviations between the characteristics (12, 16) calculated by the respective calibration models (11, 14) are determined and output.
Abstract:
Monochromatic infrared radiation of variable wavelengths between 1.0 and 3.5 microns is directed upon a portion of a moving web, and the spectra of infrared radiation reflected from the web portion and of radiation transmitted through the web portion are separately measured by sensors located on both sides of the web. These spectra are combined to provide an absorption spectrum insensitive to any elastic scattering that is also present. Measures of the contents of the web constituents are generated by least-square fitting the individual absorption spectra of the constituents to the measured absorption spectrum of the web. Means for calibrating the reflectance and transmittance measurements and for keeping the sensor viewing windows free of dirt and dust are also disclosed.
Abstract:
A device may determine a calibration value for a spectrometer using light from a first light source; deactivate the first light source after determining the calibration value; perform measurement with regard to a sample based on the calibration value, wherein the measurement of the sample is performed using light from a second light source; determine that the calibration value is to be updated; and update the calibration value using the light from the first light source.
Abstract:
Tissue sample carriers for use in multispectral imaging are disclosed. In one aspect, a composition for fixing a tissue sample for multispectral imaging includes a carrier configured to protect and carry the tissue sample. The carrier has a first autofluorescence level when multispectral light strikes the tissue sample carried by the carrier. The composition further includes a pigment combined with the carrier and configured to reduce an autofluorescence property of the carrier such that the carrier has a second autofluorescence level when multispectral light strikes the tissue sample carried by the carrier. The second autofluorescence level is less than the first autofluorescence level.
Abstract:
Systems and methods here may be used for automated alignment and focus adjustment for one or multiple sample gemstones on a stage, including determining gemstone sample tilt based on image data, automatically moving a stage to align the tilted sample, determining a focal plane that overlaps a focal point of a camera with the gemstone, and automatically moving a stage to the focal plane.
Abstract:
A method for controlling a spectrometer for analyzing a product includes steps of: acquiring a measurement representative of the operation of a light source, determining, depending on the measurement, a value of supply current of the light source, and/or a value of integration time of light-sensitive cells of a sensor, disposed on a route of a light beam emitted by the light source and having interacted with a product to be analyzed, and if the integration time and/or supply current value is between threshold values, supplying the light source with a supply current corresponding to the determined supply current value, adjusting the integration time of a light-sensitive cell to the determined integration time value, and acquiring light intensity measurements supplied by the sensor, enabling a spectrum to be formed.
Abstract:
A configuration of detecting light from the front face of a light source is the best for confirming the variation of a light quantity, but when a plurality of light sources are present, as many detectors for checking a light quantity as the light sources are necessary and the apparatus configuration becomes complex. In the present invention, a detector for checking a light source light quantity is installed in a reaction container transfer mechanism used commonly for a plurality of detection sections, and the light quantities of light sources are checked with the detector.
Abstract:
One aspect provides a system including a sensor adjustment component comprising: a memory device having adjustment information stored therein; signal source capable of producing a signal detectable by a sensor to be adjusted; and one or more processors; wherein the one or more processors are configured to execute program instructions to operate the signal source to produce a predetermined signal pattern detectable by a measurement component of the sensor to be adjusted; and wherein the predetermined signal pattern comprises the adjustment information. Other aspects are disclosed.