Abstract:
A method for controlling a spectrometer for analyzing a product includes steps of: acquiring a measurement representative of the operation of a light source, determining, depending on the measurement, a value of supply current of the light source, and/or a value of integration time of light-sensitive cells of a sensor, disposed on a route of a light beam emitted by the light source and having interacted with a product to be analyzed, and if the integration time and/or supply current value is between threshold values, supplying the light source with a supply current corresponding to the determined supply current value, adjusting the integration time of a light-sensitive cell to the determined integration time value, and acquiring light intensity measurements supplied by the sensor, enabling a spectrum to be formed.
Abstract:
A method, apparatus for executing the method, and computer program products for use in such an apparatus. The method includes scanning an interrogating light across multiple sites on an array package including an addressable array of multiple features of different moieties, which scanned sites include multiple array features. Signals from respective scanned sites emitted in response to the interrogating light are detected. The interrogating light power is altered for a first site on the array package during the array scan, based on location of the first site or on a determination that the emitted signal from the first site will be outside a predetermined value absent the altering (which allows for protecting a detector against expected overly bright sites), or is altered during the array scan based on the detected interrogating light power (which allows for compensating for light source drift during an array scan).
Abstract:
System, including methods and apparatus, for performing droplet-based assays that are controlled and/or calibrated using signals detected from droplets.
Abstract:
A system for performing quality control for nucleic acid sample sequencing is disclosed. The system comprises a set of solid supports, each solid support having attached thereto a plurality of nucleic acid sequences, wherein the set comprises plural groups of solid supports and each group contains solid supports having the same nucleic acid sequences attached thereto. The nucleic acid sequences of each group differ from each other. The nucleic acid sequences are synthetically derived, and the nucleic acids sequences are designed such that the nucleic acid sequences produce a predefined pattern of detectable signals during a sequencing run. A method of preparing a quality control for performing nucleic acid sample sequencing, a method of validating a nucleic acid sequencing instrument during a nucleic acid sequencing experiment, and a method of processing nucleic acid sequencing data during a nucleic acid sequencing experiment are also disclosed.
Abstract:
The present invention relates to a method for controlling a spectrometer for analyzing a product, the spectrometer including a light source including several light-emitting diodes having respective emission spectra covering in combination an analysis wavelength band, the method including steps of: supplying at least one of the light-emitting diodes with a supply current to switch it on, measuring a light intensity emitted by the light source by measuring a current at a terminal of at least another of the light-emitting diodes maintained off, determining, according to each light intensity measurement, a setpoint value of the supply current of each diode that is on, and regulating the supply current of each diode that is on so that it corresponds to the setpoint value.
Abstract:
A method, apparatus for executing the method, and computer program products for use in such an apparatus. The method includes scanning an interrogating light across multiple sites on an array package including an addressable array of multiple features of different moieties, which scanned sites include multiple array features. Signals from respective scanned sites emitted in response to the interrogating light are detected. The interrogating light power is altered for a first site on the array package during the array scan, based on location of the first site or on a determination that the emitted signal from the first site will be outside a predetermined value absent the altering (which allows for protecting a detector against expected overly bright sites), or is altered during the array scan based on the detected interrogating light power (which allows for compensating for light source drift during an array scan).
Abstract:
A system for performing quality control for nucleic acid sample sequencing is disclosed. The system comprises a set of solid supports, each solid support having attached thereto a plurality of nucleic acid sequences, wherein the set comprises plural groups of solid supports and each group contains solid supports having the same nucleic acid sequences attached thereto. The nucleic acid sequences of each group differ from each other. The nucleic acid sequences are synthetically derived, and the nucleic acids sequences are designed such that the nucleic acid sequences produce a predefined pattern of detectable signals during a sequencing run. A method of preparing a quality control for performing nucleic acid sample sequencing, a method of validating a nucleic acid sequencing instrument during a nucleic acid sequencing experiment, and a method of processing nucleic acid sequencing data during a nucleic acid sequencing experiment are also disclosed.
Abstract:
According to one embodiment, an automatic analyzer includes a magnetic field generator, a photometric unit, a measurement unit, and a decision unit. The magnetic field generator causes magnetic separation in a reaction liquid stored in a cuvette by magnetic particles. The photometric unit includes a light source unit configured to generate light, and a detection unit configured to detect the light generated by the light source unit and generate an output signal corresponding to the detected light. The measurement unit measures a measurement item based on the output signal. The decision unit decides the use range of the output signal to be used to measure the measurement item in accordance with spatial unevenness of the magnetic separation by the magnetic field generator.
Abstract:
By measuring a luminance difference between predetermined two points or a luminance variation in a predetermined region in a state in which a liquid sample is developed in a chromatography specimen 1, and comparing the luminance difference or the luminance variation with a preset reference value, it is possible to automatically detect degradation such as a decrease in hydrophilicity in the lower portion of a liquid-impermeable sheet material 8 during a chromatography inspection, thereby enabling an accurate inspection.
Abstract:
By measuring a luminance difference between predetermined two points or a luminance variation in a predetermined region in a state in which a liquid sample is developed in a chromatography specimen 1, and comparing the luminance difference or the luminance variation with a preset reference value, it is possible to automatically detect degradation such as a decrease in hydrophilicity in the lower portion of a liquid-impermeable sheet material 8 during a chromatography inspection, thereby enabling an accurate inspection.