Abstract:
A charge control system includes a lithium battery configured to provide lithium battery power to a set of electrical loads, a user signaling device, and control circuitry coupled with the lithium battery and the user signaling device. The control circuitry is operative to: (A) detect availability of charge from an external charger, (B) in response to detection of the availability of charge from the external charger and prior to controlling the external charger to adjust the amount of charge stored by the lithium battery, perform a set of pre-charging assessment operations, and (C) based on the set of pre-charging assessment operations, provide a user notification via the user signaling device, the user notification indicating whether the lithium battery is properly setup for charge adjustment. When the user signaling device generates the user notification, the user is informed that the utility vehicle is properly connected to the external charger.
Abstract:
A system method for detecting taillight signals of a vehicle using a convolutional neural network is disclosed. A particular embodiment includes: receiving a plurality of images from one or more image-generating devices; generating a frame for each of the plurality of images; generating a ground truth, wherein the ground truth includes a labeled image with one of the following taillight status conditions for a right or left taillight signal of the vehicle: (1) an invisible right or left taillight signal, (2) a visible but not illuminated right or left taillight signal, and (3) a visible and illuminated right or left taillight signal; creating a first dataset including the labeled images corresponding to the plurality of images, the labeled images including one or more of the taillight status conditions of the right or left taillight signal; and creating a second dataset including at least one pair of portions of the plurality of images, wherein the at least one pair of portions of the plurality of the images are in temporal succession.
Abstract:
A self-driving vehicle includes a plurality of operation members for the driver to operate and a controller. The plurality of operation members includes a steering operation member, a brake operation member, and an accelerating operation member. The controller has, as control modes thereof, an automatic operation mode and a manual operation mode. The operation member that is predefined as a trigger for the shift from the automatic operation mode to the manual operation mode differs depending on states of the vehicle in the automatic operation mode. The self-driving vehicle enables the driver to shift the control mode from the automatic operation mode to the manual operation mode with a simple operation.
Abstract:
A autonomous robotic golf caddy which is capable of following a portable receiver at a pre-determined distance, and which is capable of sensing a potential impending collision with an object in its path and stop prior to said potential impending collision.
Abstract:
A autonomous robotic golf caddy which is capable of following a portable receiver at a pre-determined distance, and which is capable of sensing a potential impending collision with an object in its path and stop prior to said potential impending collision.
Abstract:
A control apparatus for a self-moving cart is disclosed, in particular a golf caddy, comprising at least a speed control of a motor onboard the cart and a logical control unit which adjusts said speed control of said motor based on the relative position of a reference user, furthermore comprising a proximity detection device meant to face the rear side of the cart, with respect to the travelling direction, so as to detect a relative distance with respect to a user following the cart, said logical control unit being configured so as to determine said speed control depending on said detected relative distance so that it is maintained in a tolerance range defined by a maximum distance and a minimum distance, wherein said minimum distance is such as to enable the user to operatively reach on/off means of said apparatus meant to be installed onboard said cart.
Abstract:
A remote-controlled electric golf bag cart has a remote control, a support frame, an antenna set and a control module. The remote control transmits a distance measurement signal. The support frame has a wheel assembly, a golf bag stand and a motor assembly mounted thereon. The antenna set and the control module are mounted on the support frame. The antenna set receives the distance measurement signal. The control module determines an orientation and a distance of the remote control according to the distance measurement signal received by the antenna set, and drives the motor assembly to move the support frame forward toward the remote control, making the support follow a user having the remote control and preventing other in-field persons and obstacles from affecting the support frame to follow the remote control.
Abstract:
A method of controlling movement of a mobile robot for realizing safe and appropriate accompanying behavior to follow an accompanied target includes detecting at least a position of the accompanied target, and controlling the movement of the mobile robot, based on the detected position of the accompanied target, so that the mobile robot moves along a path that is parallel to a moving direction of the accompanied target.
Abstract:
The present invention provides a system and method of controlling a vehicle. The method includes the steps of: Providing a transmitter arranged to transmit in the microwave frequency range; providing a receiving means on the vehicle, receiving the signal, and calculating the azimuth of the transmitter with respect to the vehicle. The vehicle is controlled based on the calculated azimuth.
Abstract:
Golf cart movements at a golf course are controlled by a limited access controller that compares a golf cart's GPS-determined position against a limited access map to restrict performance of inputs by the golf cart's driver to the golf cart's motor under predetermined conditions, such as if a golf cart enters or has a predetermined likelihood of entering a limited access area. The limited access controller inhibits motor responses, such as by preventing motor operation, limiting available motor speeds, or allowing motor operation only in a vector that removes the golf cart from the limited access area, such as operation in reverse. Golf carts of a golf course communicate with a base station that updates the limited access map by defining limited access area perimeters and allowable actions within a limited access area and that directly commands allowable motor operations. For example, golf carts are prohibited from entering green areas, are restricted to golf cart paths during cart-path-only periods, and are restricted to reduced speeds in driving hazard areas.