Abstract:
Techniques are directed to operating a utility vehicle having global positioning system (GPS) circuitry and a geofencing data repository. Such techniques involve receiving, from the GPS circuitry, GPS output that indicates geolocation. The techniques further involve updating geofencing data within the geofencing data repository based on the GPS output that indicates geolocation. The techniques further involve, after updating the geofencing data, providing control to the utility vehicle based on the geofencing data within the geofencing data repository.
Abstract:
A control apparatus for a self-moving cart is disclosed, in particular a golf caddy, comprising at least a speed control of a motor onboard the cart and a logical control unit which adjusts said speed control of said motor based on the relative position of a reference user, furthermore comprising a proximity detection device meant to face the rear side of the cart, with respect to the travelling direction, so as to detect a relative distance with respect to a user following the cart, said logical control unit being configured so as to determine said speed control depending on said detected relative distance so that it is maintained in a tolerance range defined by a maximum distance and a minimum distance, wherein said minimum distance is such as to enable the user to operatively reach on/off means of said apparatus meant to be installed onboard said cart.
Abstract:
A distance measuring device reduces an amount of calculations required to generate a parallax image. The distance measuring device that generates the parallax image to measure a distance includes image sensors each capturing an image, an edge image extractor that extracts an edge image in accordance with the image, the edge image including pixel values each containing identification information used to identify an edge caused by a brightness variation from light to dark or an edge caused by a brightness variation from dark to light, a binarized edge image generator that generates a binarized edge image in accordance with the identification information of the edge image, a parallax image generator that generates the parallax image from the binarized edge image, and a distance image calculator that calculates a distance image from the parallax image.
Abstract:
A foldable cart assembly having a user tracking arrangement so as to autonomously precede the movement of a user or follow movement instructions of the user during motion over a field. The cart assembly has a plurality of ultrasound and RF sensors in communication with corresponding sensors in a remote handset transmission device carried by the user. The sensors provide timing, direction and distance information to a central processor on the cart for instructing individual electrical motors empowering the respective direction and speed of rotation of the cart's wheels.
Abstract:
A foldable cart assembly which is arranged to provide trackable transportation to a product or a person. The cart contains sensors and computer-controlled drive wheels to enable that cart assembly, when fully opened, to follow a safe path as directed by received electronic signals. That cart assembly is also tri-foldably collapsible, so as to have multiple portions pivoted into nesting configuration with one another thus containable in a minimal volume and even carried by an individual.
Abstract:
A method of controlling a movement of a mobile robot for realizing safe and appropriate accompanying behavior to follow an accompanied target includes detecting at least a position of the accompanied target, and controlling the movement of the mobile robot, based on the detected position of the accompanied target, so that the mobile robot moves along a path that is parallel to a moving direction of the accompanied target.
Abstract:
A robotic golf caddy apparatus (21) movably supported on a steering assembly (28) and including a communications assembly (41) for communicating with a GPS system (61) and a central control station in order to guide and steer the apparatus around designated accessible areas of a golf course. The apparatus (21) also includes a dead reckoning system with distance determination device (83) and compass (85) for determining the distance the caddy travels should the communications assembly (41) lose communications with a predetermined minimum number of satellites in the GPS system (61). Also, a sensor (72a) is provided for detecting a guide tape or line (126,130), provided in preselected areas of the golf course. The caddy apparatus (21) is steered along the guide tape (126,130), rather than by the GPS system (61), in certain areas of the course where the GPS system (61) may be inadequate for maximum safe operation of the caddy apparatus.
Abstract:
A remotely-controlled vehicle, preferably configured as a golf cart is controlled by two independent driving motors operably connected each to one of the wheels. Signals for operation of the motors are generated by an infra-red signal detecting device, which detects infra-red signals from a remote source being followed by the vehicle. The infra-red signal detecting device includes two detectors which detect the source to the sides of the vehicle and turn the device in that direction by applying a differential speed to the wheels. The infra-red detecting device also includes two detectors which detect the source forwardly of the device at one of three different locations in response to which the speed of the vehicle is controlled.
Abstract:
A self-propelled, battery powered vehicle adapted to carry golf clubs and the like and including means to automatically follow a golfer carrying a small transmitter as he walks about a golf course. The transmitter generates a signal pattern which magnetically couples the transmitter to a directional antenna system carried by the vehicle. An automatic guidance system in the vehicle provides signals which control the individual speeds of right and left wheel drive motors to affect steering and vehicle speed in response to the position and movement of the golfer''s transmitter. The vehicle may be provided with a collapsible control arm which permits manual steering of the vehicle in lieu of the transmitter control.
Abstract:
A autonomous robotic golf caddy which is capable of following a portable receiver at a pre-determined distance, and which is capable of sensing a potential impending collision with an object in its path and stop prior to said potential impending collision.