Abstract:
An encoded switch array having a keyboard comprising a plurality of buttons, each button when depressed adapted to force a conductive contactor against a conductive wiring pattern supported on a board or the like, the contactor preferably being of a conductive plastic normally held away from the wiring pattern by resilent biasing means.
Abstract:
This disclosure describes a telephone station dial having a compliant membrane supporting an array of pushbuttons. A conductive region on the membrane beneath each button contacts, on depression, printed circuit paths associated with two trigger circuits that in turn connect to a specific pair of multifrequency oscillator inputs. The trigger circuits comprise field effect transistors which provide a specified, unvarying output signal in response to the impedance change, either resistive or capacitive.
Abstract:
A signal-actuating device having its major component parts molded as a single piece. The actuating device includes a single body composed of an elastomeric material which is a glycol cured isocyanate terminated polyester formulated to be virtually a true gel, character symbols bonded on the body representing key positions and Mylar circuitry strips of etched copper wires bonded to raised projections located on the underside of the body. Contact made by depressing a key gives a binary-coded output, as well as providing a signal for activating distant devices.
Abstract:
Input device in which a defect of a control disk is eliminated while making use of an advantage of the control disk and an electronic device using the input device. The input device may include: an operation panel, which may be operated by a user; a board, which may be arranged to be opposed to a surface opposite to an operation surface of the operation panel operated by the user; a conductive elastic body and a pusher, which may be fixed on the operation panel; and a sensor portion and a member to be pressed, which may be placed on the board to be opposed to the conductive elastic body and the pusher, respectively.
Abstract:
The invention relates to a dynamic display keyboard comprising a plurality of key elements, each key element comprises a transmitting part capable of transmitting at least a part of light incident on the transmitting part; a mat comprising a plurality of elevated elements capable of providing a tactile feedback and providing passage of light through the elevated elements; wherein each key element is fixedly connected to at least one respective elevated element; an optical element for each key element; wherein each optical element is adapted to focus an incident light beam onto a transmitting part; at least one display unit capable of providing light to the plurality of transmitting parts via the optical element; and wherein the light provided to a transmitting part defines a visual value of the corresponding key element. In this way, the keyboard is dynamic and further is able to provide a tactile feedback in response to a user action directed towards a key of the keyboard.
Abstract:
Input device in which a defect of a control disk is eliminated while making use of an advantage of the control disk and an electronic device using the input device. The input device may include: an operation panel, which may be operated by a user; a board, which may be arranged to be opposed to a surface opposite to an operation surface of the operation panel operated by the user; a conductive elastic body and a pusher, which may be fixed on the operation panel; and a sensor portion and a member to be pressed, which may be placed on the board to be opposed to the conductive elastic body and the pusher, respectively.
Abstract:
A contact element for the intermittent contacting of conductor tracks on a circuit board, in particular, for flexible touchpads, for example for flexible input devices in the automobile industry, is made from a metal foam. The metal foam may be at least partly infiltrated by an elastomeric material which can also be the material of construction of the touchpad. The contact element has a very reliable construction which is particularly suitable for high voltage application. A method for production of the contact element, touchpads/input devices with such contact pads and the use of the contact pads is also provided.
Abstract:
Key actuators and other switching devices are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The ratio of the weight of the conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers to the weight of the base resin host is between about 0.20 and 0.40. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like. The conductive loaded resin-based key actuators and other switching devices can be formed using methods such as injection molding compression molding or extrusion. The conductive loaded resin-based material used to form the key actuators and other switching devices can also be in the form of a thin flexible woven fabric that can readily be cut to the desired shape.
Abstract:
A hearing assistance device, comprising a microphone to receive sound, signal processing electronics electrically connected to the microphone, a receiver electrically connected to the signal processing electronics and a switch electrically connected to the signal processing electronics, wherein the switch includes conductive silicone adapted to change the switch from a first state to a second state when activated.
Abstract:
The invention relates to a keyboard and to a method for producing a keyboard for activating electrical switching functions, comprising: a first substrate having a first contact structure; a second substrate having a second contact structure, and; an intermediate layer that holds both contact structures at a distance from one another and enables a contacting of both contact structures when pressure is exerted upon predetermined areas of the keyboard. Both contact structures are imprinted by means of a mass printing process.