Abstract:
The present disclosure aims to provide an electrical contact to which a low boiling point metal is added, the electrical contact being able secure both mechanical strength and conductivity at the same time. The electrical contact according to the present disclosure includes a base material made of Cu, particles of a high melting point substance dispersed in the base material, the particles being made of at least one of a high melting point metal or a carbide of the high melting point metal, and Te and Ti dispersed in the base material, wherein, the Te of 3.5 to 14.5 mass % is added where the total is 100 mass %, and Ti/Te is 0.12 to 0.38.
Abstract:
It is a method for producing an electrode material containing Cu, Cr and a heat-resistant element. A heat-resistant element powder and a Cr powder are mixed together in a ratio such that the heat-resistant element is less than the Cr by weight. A mixed powder of the heat-resistant element powder and the Cr powder is baked. A sintered body obtained by the baking and containing a solid solution of the heat-resistant element and the Cr is pulverized, and a solid solution powder obtained by the pulverizing is classified, to have a particle size of 200 μm or less. 10-60 parts by weight of the classified solid solution powder and 90-40 parts by weight of a Cu powder are mixed together, followed by sintering to obtain the electrode material. If a low melting metal powder having a median size of 5-40 μm is mixed with a mixed powder of the solid solution powder and the Cu powder, the deposition resistance property is further improved.
Abstract:
In a conductive sheet using a metal nanofiber, metal migration in a visible conductive pattern is eliminated. Also, the intervals of the conductive portion (separate sheet terminal) are shortened. On a substrate (26) is a conductive sheet (10), formed from a transparent conductive pattern (11) and a visible conductive pattern (16). The transparent conductive pattern comprises a first nanofiber layer (12) that is a layer including a metal nanofiber, and a first heat-insulating layer (29) adjacent to the first nanofiber layer. The visible conductive pattern (16) forms an underlayer pattern from a second nanofiber layer (17) that is a layer including a metal nanofiber, and a second heat-insulating layer (27) adjacent to the second nanofiber layer; and a top-layer pattern comprising a paste layer (18) that is a layer including a metal paste laminated on the underlayer pattern. The second heat-insulating layer (27) is a conductive sheet that is a layer including a metal nanofiber cut to a minimum size. The visible conductive pattern (16) forms a water-shielding layer (21) on the underlayer pattern, and forms the top-layer pattern on the water-shielding layer.
Abstract:
A vacuum interrupter is provided with a double co-axial contact arrangement in which an inner contact can have a TMF-like or Pin shape arranged within a concentrically cup shaped AMF coil having a single layer or multilayered contact parts at each side, on the side of a fixed contact arrangement as well as on the side of a movable contact arrangement. To provide high conductivity and low resistance, the outer cup shaped contact is made from a double or multiple layer arrangement, wherein at least one layer is made from a hard steel or steel alloy, and at least a second layer is made from material with high thermal conductivity.
Abstract:
A contact element for the intermittent contacting of conductor tracks on a circuit board, in particular, for flexible touchpads, for example for flexible input devices in the automobile industry, is made from a metal foam. The metal foam may be at least partly infiltrated by an elastomeric material which can also be the material of construction of the touchpad. The contact element has a very reliable construction which is particularly suitable for high voltage application. A method for production of the contact element, touchpads/input devices with such contact pads and the use of the contact pads is also provided.
Abstract:
A resistive surface pad 10 is provided, including a first upper contact surface 32, a second upper contact surface 34, a first lower contact surface 38 and a second lower contact surface 40. The first upper contact surface 32 and the second upper contact surface 34 are shaped to form a generally arc-shaped upper contact gap 36. The first lower contact surface 38 and the second lower contact surface 40 are shaped to form a generally arc-shaped lower contact gap 42. The second upper contact surface 34 and the second lower contact surface 40 are shaped to form a continuous, generally horizontal, center contact gap 44.
Abstract:
A key operated switch for keyboards having an improved layer type construction comprising a key carrier and key return spring supporting printed circuit conductors and contacts so arranged as to facilitate fully automatic production of keyboards. The simple formation of a leaf spring, a key guide and the key stem comprising the switch enables these parts also to be assembled by machine, making the manufacture of a keyboard simple and inexpensive.
Abstract:
An electronic keyboard includes a base defining a surface having a plurality of faces oriented at different angles. A flexible printed circuit defining rows of switches is disposed on the base surface and rows of switch actuators are disposed on the printed circuit. The actuators comprise key guide strips which define key positions offset along the rows from the switch positions and spring strips which bridge the key and switch positions so that, when keys slidably mounted in the key guide strips are depressed, they close the associated switches. The spring strips are designed to produce minimum operator fatigue and all of the keyboard components coact to give the keyboard a very low profile.
Abstract:
A flexible multilayered membrane switch having electrically conducting contacts comprising Ti.sub.2-x N or Ta.sub.2-x N, to reduce oxidation of the surfaces of the contacts.
Abstract:
In an electronic calculator essentially comprising a multidigit display, a keyboard and a data processor unit, a multidigit liquid crystal display is deposited together with integral key actuators of the keyboard on a flexible circuit film which carries electrical conductor leaves in a desired pattern. The conductor leaves to be in contact with terminals of the liquid crystal display are formed to extend in the direction of length of the liquid crystal display to thereby establish room for a battery compartment.