Abstract:
Electron emitters and a method of fabricating emitters are disclosed, having a concentration gradient of impurities, such that the highest concentration of impurities is at the apex of the emitters and decreases toward the base of the emitters. The method comprises the steps of doping, patterning, etching, and oxidizing the substrate, thereby forming the emitters having impurity gradients.
Abstract:
Disclosed are an electron-emitting element having a large operating current at a low operating voltage and excellent operation stability, and an electron source, an image display device and the like utilizing such an electron-emitting element, and further a method of fabricating such an element with few process steps at low cost. A cold cathode member is configured utilizing hybrid particle of a first particle serving to emit electrons into the space and a second particle being in the vicinity of the first particle and serving to control the position of the first particle. In this configuration, it is preferable that the first particle have a higher electron emission efficiency than the second particle and that the second particle be conductive.
Abstract:
Electron emitters and a method of fabricating emitters which have a concentration gradient of impurities, such that the highest concentration of impurities is at the apex of the emitters and decreases toward the base of the emitters. The method comprises the steps of doping, patterning, etching, and oxidizing the substrate, thereby forming the emitters having impurity gradients.
Abstract:
A field emission type cold cathode device comprises a substrate, and a metal plating layer formed on the substrate, the metal plating layer contains at least one carbon structure selected from a group of fullerenes and carbon nanotubes, the carbon structure is stuck out from the metal plating layer and a part of the carbon structure is buried in the metal plating layer.
Abstract:
A field electron emission material has a substrate with an electrically conductive surface. Electron emission sites on the conductive surface each include a layer of electrically insulating material to define a primary interface region between the conductive surface and the insulating layer, and a secondary interface region between the insulating layer and the vacuum environment,. Each primary interface region is treated or created so as to enhance the probability of electron injection form the conductive surface into the insulating layer. Each primary interface region after such treatment or creation is either an insulator or graded from conducting adjacent the conductive surface to insulating adjacent the insulating layer.
Abstract:
A field emission type cold cathode device comprises a substrate, and a metal plating layer formed on the substrate, the metal plating layer contains at least one carbon structure selected from a group of fullerenes and carbon nanotubes, the carbon structure is stuck out from the metal plating layer and a part of the carbon structure is buried in the metal plating layer.
Abstract:
An electron emitting device includes at least a first electrode and an electron emitting section provided on the first electrode. The electron emitting section is formed of a particle or an aggregate of particles. The particle contains a carbon material having a carbon six-membered ring structure. The carbon material having a carbon six-membered ring structure contains, for example, graphite or a carbon nanotube as a main component.
Abstract:
A field emission display device and a method of fabricating the same are provided. The field emission display device includes a substrate, a transparent cathode layer, an insulation layer, a gate electrode, a resistance layer, and carbon nanotubes. The transparent cathode layer is deposited on the substrate. The insulation layer is formed on the cathode layer and has a well exposing the cathode layer. The gate electrode is formed on the insulation layer and has an opening corresponding to the well. The resistance layer is formed to surround the surface of the gate electrode and the inner walls of the opening and the well so as to block ultraviolet rays. The carbon nanotube field emitting source is positioned on the exposed cathode layer. An alignment error between the gate electrode and the cathode is removed, and carbon nanotube paste is prevented from remaining during development, thereby preventing current leakage and short circuit between the electrodes and diode emission. Accordingly, the performance of the field emission display device can be improved.
Abstract:
A system in accordance with the invention which generates electrons by means of a field-emission cathode comprises an array of electron-emitting micropoints associated with a grid and carried by a substrate with integral heater means for heating the micropoints to a temperature in the range approximately 300° C. to approximately 400° C. and maintaining them at that temperature during emission of electrons. The cathode can therefore function at higher residual air pressures with no risk of breakdown.
Abstract:
To form a sharp edge portions of an electron emission part of a field emission type cathode to face an electron application surface. At least an electron emission part 40 of a field emission type cathode K is constituted by stacking thin plate-like conductive fine grains 30 and the field emission type cathode K is formed so that the plane direction of the thin plate-like fine grains of the electron emission part 40 crosses an electron application surface.