Abstract:
The helix (10) of the slow wave structure of a travelling wave tube is formed on a steel mandrel (12) by depositing the metal (44) of the helix on the mandrel and then coating the deposited metal with a photo resist (46). A laser light beam (24,26), having a cross section in the form of a short line, is focused upon the resist and moved linearly along the axis of the mandrel while the mandrel is rotated. The resulting helical exposure pattern on the photo resist is developed and the remainder of the undeveloped resist is then removed to expose a helical pattern (50,52) of deposited helix metal (44). The latter is subjected to etching processes so as to remove the deposited metal between the turns of the helical resist pattern (54,56), leaving a helix (44) of deposited metal on the mandrel underneath the resist. The resist is then removed and the mandrel etched away to leave the completed helix.
Abstract:
A microwave tube provided with at least one axial part, supported by at least three spacers and fitted cold into a coaxial envelope. The internal surface of the envelope or the external surface of the part comprises a relief designed to block a spacer so that the assembly formed by the part and the spacers is clamped in the envelope. The blocking is obtained by a relative shift between at least one spacer and the surface comprising the relief. The axial part may be the gun or the collector of a longitudinal-interaction tube or the delay line of a travelling-wave tube.
Abstract:
A delay line for travelling wave tubes, particularly travelling wave tube whose gain and whose output power are independent of frequency over a plurality of octaves and contain a helix (9) in an electrically conductive cylinder (5). The helix is fixed and adjusted by retaining rods (8). Loading webs (4) are arranged parallel to the axis of the adjoining electrically conductive cylinder (5) and a small gap (12) is left free adjacent the helix (9). The extremely high requirement for mechanical dimensional accuracy and reproducibility of the dimensions in such delay lines are obtained by using loading webs (4) which are integrally formed in the electrically conductive cylinder (5).
Abstract:
A magnetron anode is manufactured by producing a blank in a sheet of conductive material which is then bent to form an anode vane structure. The structure is then inserted in a cylindrical block and brazed in position to form the magnetron anode. The anode vane structure may be formed from two folded blanks, which are arranged to interengage one another.
Abstract:
Slow-wave structures are formed by the method of this invention in the form of a coupled-cavity structure. The coupled-cavity form of waveguide slow-wave structures is formed by wire electric discharge machining of disks from a solid rod of copper. The disks are supported in their desired positions by retained portions of the rod while the disks are brazed inside a cylindrical shell of copper. After brazing, the retained portions may be partially removed to form the completed slow-wave structure.
Abstract:
An integral conductively-loaded encasing barrel for a slow-wave structure is formed by electrical discharge machining a plurality of circumferentially spaced longitudinally extending slots in the interior surface of the barrel. The machining discharge is established between a portion of the interior surface of the barrel and an electrode wire which is moved in a longitudinal direction within the barrel while the barrel is moved in a preselected manner in a plane transverse to the direction of movement of the wire. A subassembly comprising a slow-wave structure and a plurality of longitudinally disposed electrically insulating support rods in contact with and circumferentially spaced about the outer surface of the slow-wave structure is secured within the barrel with the support rods disposed within respective machined slots. The radially inwardly projecting portions of the barrel between the slots provide integral conductive loading for the slow-wave structure.
Abstract:
A magnetron anode is constructed of performed blanks which are bent in two portions of which one portion is a vane and a second portion is a segment of a cylindrical surface of the anode. Alternate blanks are provided with an alternate arrangement of supports for strapping rings of the magnetron anode. The assembly of cylindrical segments is enclosed within a sleeve to which the segments are brazed to provide an air tight wall of the magnetron anode.
Abstract:
A method for manufacturing an anode structure used for a magnetron from metal stock, by which the peripheral wall and the inner vanes of the anode are integrally constructed, the said method comprising three steps, that is: the step of forming a primary workpiece consisting of a thick cylindrical wall and a thick disk-like part closing the cylinder in its axially mid portion, the step of forming a secondary workpiece from the primary workpiece by a warm extruding process so that the secondary workpiece has a plurality of radial vanes integral with the cylindrical wall and extending radially inward from the wall, and a step of removing the remaining portion of the disk-like part bridging the bottom ends of the vanes.
Abstract:
A METHOD FOR FABRICATING A MOLYBEDNUM "RISING SUN" MAGNETRON ANODE IS DISCLOSED. IN THE METHOD, THE RADIAL ARRAY OF VANES IN BRAZED INTERMEDIATE AN OUTER RING AND AN INNER POST. A SPIDER STRUCTURE HAVING A RING SHAPED BODY WITH DEPENDENT AXIALLY DIRECTED LEG PORTIONS IS BRAZED THE VANES WITH THE LEG PORTIONS BEING LOCATED IN EVERY OTHER SPACE BETWEEN ADJACENT VANES TO FORM A RIGID SELF JIGGING STRUCTURE. ONCE BRAZED, THE CENTER POST, ADJACENT VANE TIPS AND RING PORTION OF THE SPIDER ARE REMOVED SO DEFINE A "RISING SUN" ANODE CONFIGURATION.