Abstract:
An inductively powered gas discharge lamp including both a power coil and a heating coils associated with each filament. The heating coils enable the filaments to be preheated before the starting voltage is applied through the power coils. The inductive power coils and the inductive heater coils are contained within the lamp envelope, allowing the lamp to be entirely sealed. A method of dimming the lamp also is disclosed. The lamp is dimmed by both decreasing the power applied to the power coils and increasing the power applied to the heating coils so as to prevent the arc from extinguishing under lower voltage conditions.
Abstract:
An inductive power supply system for providing power to one or more inductively powered devices. The system includes a mechanism for varying the physical distance or the respective orientation between the primary coil and secondary coil to control the amount of power supplied to the inductively powered device. In another aspect, the present invention is directed to an inductive power supply system having a primary coil and a receptacle disposed within the magnetic field generated by the primary coil. One or more inductively powered devices are placed randomly within the receptacle to receive power inductively from the primary coil. The power supply circuit includes circuitry for adjusting the power supplied to the primary coil to optimize operation based on the position and cumulative characteristics of the inductively powered device(s) disposed within the receptacle.
Abstract:
An inductive coil assembly having multiple coils arranged at distinct orientations to provide efficient inductive coupling of power or communications or both to a device when the device is arranged at different orientations with respect to the inductive primary coil. In one embodiment, the inductive coil assembly includes three coils, each oriented along one of the x, y and z axes of a standard Cartesian three-dimensional coordinate system. The three separate coils provide effective transfer of power and communication when the device is at essentially any orientation with respect to the primary coil. In an alternative embodiment, the multi-axis inductive coil assembly of the present invention can function as a primary to inductively transmit power or communication or both over a plurality of magnetic fields at distinct orientations.
Abstract:
A radiation generating system for treating a coating on a substrate. A high voltage circuit provides power to a microwave generator that, in turn, supplies microwave radiation to drive a lamp. A current limiting device is connected between the high voltage circuit and the microwave generator, and a fault detector is connected to the high voltage circuit for providing an error signal in response to excess current being supplied to the microwave generator. A control is operative to interrupt a supply of AC power to the high voltage circuit in response to the error signal.
Abstract:
An inductive power supply system for providing power to one or more inductively powered devices. The system includes a mechanism for varying the physical distance or the respective orientation between the primary coil and secondary coil to control the amount of power supplied to the inductively powered device. In another aspect, the present invention is directed to an inductive power supply system having a primary coil and a receptacle disposed within the magnetic field generated by the primary coil. One or more inductively powered devices are placed randomly within the receptacle to receive power inductively from the primary coil. The power supply circuit includes circuitry for adjusting the power supplied to the primary coil to optimize operation based on the position and cumulative characteristics of the inductively powered device(s) disposed within the receptacle.
Abstract:
A light source of the invention includes: a cylinder having disposed therein a phosphor material that emits light by ultraviolet rays which are radiated due to discharge; a pair of internal electrodes disposed inside the cylinder; a pair of external electrodes a and b disposed outside the cylinder; and a lamp controller that switches between an external electrode lighting mode resulting from the application of a voltage to the pair of external electrodes and an internal electrode lighting mode resulting from the application of a voltage to the pair of internal electrodes, wherein the lamp controller controls, in the external electrode lighting mode, an electric potential VIN with respect to the pair of internal electrodes and an electric potential VH of the electrode of the higher electric potential of the pair of external electrodes to a condition where VIN>VH or VIN≈VH.
Abstract translation:本发明的光源包括:在其中设置有由于放电而辐射的紫外线发光的荧光体材料的圆筒; 设置在所述气缸内的一对内部电极; 设置在气缸外部的一对外部电极a和b; 以及灯控制器,其在由所述一对外部电极施加电压引起的外部电极点亮模式和由所述一对内部电极施加电压而产生的内部电极点亮模式之间切换,其中所述灯控制器控制 在外部电极点亮模式中,相对于一对内部电极的电位V IN IN和电位较高的电极的电位V H H 该一对外部电极处于其中V IN H IN或V IN IN H≈V H a。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
Abstract:
An electrodeless discharge lamp is disclosed that comprises a bulb with a substance for electric discharge sealed therein, the bulb having a reentrant portion protruding inwardly along a Z-axis direction; an induction coil arranged in the reentrant portion, the induction coil having a magnetic core and a winding wound around the magnetic core; and a drive circuit for supplying the induction coil with a power from 50 kHz to 1 MHz. The bulb has an outer diameter from 65 mm to 75 mm in a direction orthogonal to the Z-axis direction, and the magnetic core has a length L in the Z-axis direction that is 1.05 times or more a length L′ of the winding in the Z-axis direction, the length L being set to 41 mm or less.
Abstract:
A high pressure discharge lamp starter device comprises a starter circuit OC and control element CC. The starter circuit OC is capable of starting up an essentially mercury free high-pressure discharge lamp HPL containing a rare gas and a metal halide. The control element CC controls the starter circuit OC to start up the high pressure discharge lamp HPL, supply a lamp power larger than twice a rated lamp power, reduce lamp power such that light output is not significantly larger compared to that during a stable light emission time and the light output does not rapidly increase, when a metal halide charged in the high pressure discharge lamp HPL is abruptly vaporized, thereafter, gradually reduce the lamp power so as to settle the rated lamp power.
Abstract:
This invention aims to decrease the leakage current of a dielectric barrier discharge lamp, and to prevent generation of the luminance slope between both electrodes. Electrodes 3 and 4 are formed in the outer surface of the dielectric barrier discharge lamp 1, and the high voltage side of the high frequency power sources 5 and 6 is connected to the electrodes 3 and 4, respectively. The low voltage side of the high frequency power sources 5 and 6 is connected to the grounding voltage GND. The output voltage waveform of the high frequency power sources 5 and 6 have different phases each other and inverted polarities each other.
Abstract:
An apparatus and method for intercepting leakage of microwave includes an electrodeless bulb for generating light by microwave generated from a magnetron, a sensing unit installed outside the resonator for intercepting the microwave, for passing light generated in the electrodeless bulb and outputting a corresponding sensing signal by sensing at real time whether the microwave is leaked and a control unit for turning on or off a power supplied to the magnetron by the sensing signal, thus to prevent a fire by leakage of the microwave and secure safety of a user by intercepting the microwave leaked by damage of the resonator of the lighting apparatus using the microwave.