Abstract:
The present invention comprises tire treads having sipes or other voids formed of non-curable inserts, as well as methods for forming sipes or other voids within a tread using non-curable inserts and apparatus for performing the same. Such methods include providing an uncured tread having a width and a thickness bounded by an outer side and a bottom side. Such methods further include providing a strip of non-curable material, the strip having a width and a length. Furthermore, such methods include inserting the strip of non-curable into the tread thickness from the tread outer side and to a predetermined depth within the tread thickness to form a void-forming insert within the tread thickness. Finally, these methods include curing the tread with the non-curable strip arranged within the tread thickness. The inserts may be folded, which may occur as the strips are inserted into the tread or prior to such insertion.
Abstract:
The invention relates to a tire having a rubber tread of a cap/base configuration composed of a composite of a silica-rich tread cap layer running surface, and an underlying transition zone composite of a carbon black-rich intermediate layer positioned between the tread cap layer and a tread base layer. The combination of intermediate layer and base layer provide a beneficial graduated stiffness between the tread cap layer and the tire carcass. Significantly, the transition zone composite enables a significantly thicker carbon-black rich portion of the tread composite and an associated thinner silica-rich tread cap running surface. In one aspect, the intermediate layer of the transition zone composite can extend to and include a bottom portion of at least two of the grooves of said tread cap layer to support an associated tread lug therebetween.
Abstract:
The present invention relates to a tire having a tread structure with improved electrostatic discharge properties, and more particularly, to a tire containing large amounts of silica, which has a tread structure with improved electrostatic electricity discharge properties. The tire of the present invention has a band-shaped electric discharge passage 30, which is extended from the under tread 20 to the outer surface of the cap tread 10 while being exposed to the outside of the tire through the outer surface of the cap tread 10. Thus, the tire of present invention has excellent conductivity without decreasing physical properties of the tread structure.
Abstract:
A pneumatic vehicle tire comprising a tread strip which forms the tire tread and is made from an electrically insulating or poorly conducting material and comprising, beneath the tread strip, a layer which is a good electrical conductor wherein, in order to bring about an adequate dissipation of electrical charge from the vehicle bodywork, the layer which is of good electrical conductivity extends at least regionally up to and into the tire running surface when considered over the circumference of the tire.
Abstract:
A composite tread structure (22) comprises a low modulus at -20.degree. C. rubber outer layer (23) and a high modulus at -20.degree. C. rubber inner layer (24), thicker than the outer layer. The outer layer is preferably made from a rubber having a glass transition temperature lower than the glass transition temperature of the rubber comprising the inner layer. Such a tire generally improves snow and ice handling and maintains good wet and dry traction. A pneumatic tire (10) having improved snow and ice traction employs a composite tread (22) comprising a low modulus at -20.degree. C. rubber outer layer component (23) and a high modulus at -20.degree. C. rubber inner layer rubber component (24), thicker than the outer layer component. Finally, a method for improving the snow and ice traction of pneumatic tires comprises the step of applying to the tire carcass prior to curing, a composite tread comprising a low modulus at -20.degree. C. rubber outer layer component and a high modulus at -20.degree. C. rubber inner layer component, thicker than the outer layer component.
Abstract:
A motorcycle tire having in its normally inflated condition a camber value C/L of between 0.5 and 0.7 and having a maximum axial width between edges of a ground contacting tread wherein in axial cross-section the tread comprises two tread rubber components of different rubber compounds joined by a scarf joint, the scarf joint having a width less than the width of the tread and having an intertread ply comprising reinforcing cords interposed between the two tread rubber components.
Abstract:
The invention relates to a rubber tire composed of carbon black reinforced rubber carcass and having a rubber tread which is quantitatively reinforced with silica and contains a minor amount of carbon black reinforcement and/or carbon fibers. When said tread contains silica and carbon black reinforcement exclusive of carbon fibers, the said tread has a thin rubber layer over at least a portion of the outer surface tread intended to be ground-contacting wherein said rubber layer contains a combination of silica and/or carbon black reinforcement and carbon fibers. In one aspect, such alternative outer rubber layer (a) extends across at least a portion of the outer surface of the tread intended to be ground contacting and (b) contacts at least one other carbon black reinforced rubber component of the tire to provide a path of relatively low electrical resistance from said quantitatively silica reinforced tread to the bead portion of the tire carcass.
Abstract:
A pneumatic vehicle tire has a carcass with reinforcing members and radially inwardly positioned beads and a tread strip with a tread positioned radially outwardly on the carcass. An additional layer is placed on the tread strip for reinforcing the tread. The additional layer is made of a rubber or thermoplastic material. The additional layer has a tensile modulus of elasticity that is greater than the tensile modulus of elasticity of the tread strip. The additional layer is provided with reinforcement elements.
Abstract:
The tire of this invention has a silica-rich tread compound for excellent rolling resistance and tread wear properties. The tire is made to be conductive such that electrostatic charges on the vehicle can be quickly dissipated when the vehicle stops. An electrostatic discharge ring is located on at least one shoulder portion of the tire and has a relatively low volume resistivity, on the order of 100 megohm centimeter. The discharge ring is positioned to make contact with a conductive sidewall portion of the tire. The overall resistivity of the tire from the rim to the ground surface is made to be less than about 100 megohms.
Abstract:
A radial ply pneumatic tire (30) has as asymmetric tread portion (41) having circumferential grooves (50, 51, 52, 53) and diagonal grooves (55, 56) therein. The tread is divided into three axial regions (A, B, C) of equal width, and in each region the net-to-gross ratio is different. The rate of treadwear in the axially outermost regions (A, B) of the tread are substantially equalized by features including varying groove depths and widths, groove paths, and chamfering the edges of block elements (57, 58, 62, 63) of the tread.