Abstract:
A scanning exposure apparatus and method uses an optical member to change an intensity distribution of exposure light in an illumination region.
Abstract:
A light emitting diode lighting apparatus that includes: a power supply for providing a fixed direct current; a light emitting diode head for emitting light; and a controller for adjusting the level of said light output on said head and compensating for efficiency altering effects of said light in said power head, whereby said controller receives signals for optical feedback stabilization, temperature compensation, and detection of short term current changes to adjust said light and efficiency.
Abstract:
A paper currency recognition system used in a money exchange machine includes a LED type transmitter unit and a phototransistor type receiver unit controlled by a CPU. The receiver unit also includes an N-channel MOSFET. When a variation in the induction or signal current from the receiver unit is detected, the CPU controls the MOSFET to let a part of the induction current be shunt to the MOSFET, enabling the value of the induction current to be regulated to a readable range, and at the same time drives a control chip of the receiver unit to regulate the LED driving current, keeping the light intensity of the LED within a constant value.
Abstract:
A method for wireless power transmission in a system comprising a power transmitter which in turn comprises a first light source and means for directing the light emitted by the first light source to a desired direction, and at least one power receiver comprising a first photo-detector for receiving the emitted light and for converting it into electric current. A second light source included in the power transmitter is used for transmitting light around the light emitted by the first light source and substantially parallel to it, the intensity of the light being lower than that of the light emitted by the first light source. A second photo-detector included in the power receiver is used for detecting the light emitted by the second light source and for transmitting a control signal to the power transmitter in response to a successful reception of the light emitted by the second light source. The first light source of the power transmitter is switched on in response to the reception of the control signal from the power receiver informing of the reception of the light emitted by the second light source.
Abstract:
Disclosed is an exposure method, an exposure apparatus and a device manufacturing method, in which transmission factors of almost all optical systems, including a projection optical system, can be measured during an exposure process, and in which the exposure amount is controlled on the basis of it. The exposure apparatus includes an illumination optical system for illuminating a pattern of a reticle with a laser beam from an excimer laser, and a projection lens system for projecting the pattern illuminated by the illumination optical system onto a wafer, to thereby expose the wafer with the reticle pattern, wherein reflection light or ghost light produced at a surface of a lens of the projection lens system is received by a sensor and, on the basis of the an output of the sensor, the transmission factor of the projection lens system is measured. The exposure amount is then controlled on the basis of the measurement.
Abstract:
A lighting arrangement for use in vision systems and imaging applications. The arrangement illuminates the object to be imaged with a supplied light of a specified illumination. The intensity, hue, and directionality of the supplied light can be varied. The desired illumination is specified either by manually operable controls or via a programming interface. The arrangement has a light source which includes light-emitting diodes mounted in a housing. The source provides a constant light output over a long lifetime. A light sensor senses the total illumination on the object being imaged resulting from ambient light in addition to the supplied light, and a negative feedback circuit in the arrangement can adjust the level of the supplied light in response so as to maintain a constant total illumination on the object despite variations in the ambient lighting.
Abstract:
The invention provides a smart optical microphone/sensor for sensing distances to a membrane or to a light-reflecting surface, including a source of light for illuminating the membrane or light-reflecting surface; a photodetector for receiving light reflected from the membrane or light-reflecting surface and for producing output signals; adjustable means for supplying power to the source of light, and a pre-amplifier for amplifying the output signals, whereby the sensitivity of the microphone/sensor can be adjusted.
Abstract:
Manufacturing lines include inspection systems for monitoring the quality of parts produced. Manufacturing lines for making semiconductor devices generally inspect each fabricated part. The information obtained is used to fix manufacturing problems in the semiconductor fab plant. A machine-vision system for inspecting devices includes a light source for propagating light to the device and an image detector that receives light from the device. Also included is a light sensor assembly for receiving a portion of the light from the light source. The light sensor assembly produces an output signal responsive to the intensity of the light received at the light sensor assembly. A controller controls the amount of light received by the image detector to a desired intensity range in response to the output from the light sensor. The image detector may include an array of imaging pixels. The imaging system may also include a memory device which stores correction values for at least one of the pixels in the array of imaging pixels. To minimize or control thermal drift of signals output from an array of imaging pixels, the machine-vision system may also include a cooling element attached to the imaging device. The light source for propagating light to the device may be strobed. The image detector that receives light from the device remains in a fixed position with respect to the strobed light source. A translation element moves the strobed light source and image detector with respect to the device. The strobed light may be alternated between a first and second level.
Abstract:
An LED array is controlled by determining a constant relating the peak light output of an LED to the peak driving current of a PWM pulse driving the LED, and multiplying the average current of the PWM pulse by the constant to obtain a value of average light output for the LED. The constant may be determined by simultaneously measuring peak light output of the LED and peak current of a PWM pulse driving the LED. The constant is then calculated by dividing the peak light output by the peak current of the PWM pulse. By making the simultaneous measurements at a time during the duration of the PWM pulse where the pulse has reached its full magnitude, rise and fall times of the pulse do not affect the measurements. The average current of the PWM pulse may be determined by a variety of methods including integrating current in the PWM pulse over time, or passing the PWM current through a low pass filter configured for providing an average value of PWM current. Determining average current in this manner further reduces the effect of rise and fall time on determining the average light output of the LED.
Abstract:
A light output control system for implementing a method for sensing the tri-stimulus values for controlling a light output illuminated from an LED based luminary is disclosed. The system comprises one or more filter/photo diode sensors for sensing a first set of tri-stimulus values of the light output and providing signals indicative thereof. The signals are utilized in a transformation matrix whereby a second set of tri-stimulus values is obtained. The system controls the light output as a function of the second set of tri-stimulus values.