Abstract:
A method for multi-touch integrity sensing for a multi-touch capacitive touch screen is disclosed. By determining the integrity of touches, a distinction is identified between wanted touches, such as via a finger or stylus, and unwanted touches such as via foreign matter, errors, and the like.
Abstract:
A method for multi-touch integrity sensing for a multi-touch capacitive touch screen is disclosed. By determining the integrity of touches, a distinction is identified between wanted touches, such as via a finger or stylus, and unwanted touches such as via foreign matter, errors, and the like.
Abstract:
A capacitive discharge circuit includes a line having a capacitance, a switched capacitor circuit including a capacitor, a switched circuit coupled to the line, and a voltage regulator coupled between the switched capacitor circuit and the switched circuit. A controller operates the switched capacitor circuit and switched circuit to in a first phase, charge the capacitor by coupling the capacitor between a common mode and a power supply, and in a second phase, discharge the capacitor by coupling the voltage regulator in series with the capacitor between the power supply node a ground. The controller is also configured to in a third phase, charge the capacitor by coupling the capacitor between the common mode and the power supply, and in a fourth phase, share charge between the line and the capacitor by coupling the voltage regulator and the capacitor in series between the line and the ground.
Abstract:
In one implementation, a capacitive sensing structure comprises rows of first sensors electrically coupled together and columns of second sensors electrically coupled together, wherein the first sensors include: a first arm extending in a first direction and having a first plurality of finger structures extending therefrom, a second arm extending in the first direction and having a second plurality of finger structures extending therefrom, and an end portion connecting the arms, wherein the first sensors define open regions that are occupied by the second sensors. In a second implementation, a capacitive sensing structure comprises rows of first sensors and columns of second sensors, wherein each of the first sensors includes an elongated portion having finger structures extending therefrom, and wherein each of the second sensors includes a primary portion connected to secondary portions via arms, wherein the secondary portions occupy gaps defined by the finger structures of the first sensors.
Abstract:
A circuit includes a force driver configured to apply a force signal to a force node associated with a mutual capacitance to be sensed. A sensing circuit receives a sense signal from a sense node associated with said mutual capacitance to be sensed. The sensing circuit operates to generate an output signal indicative of the sensed mutual capacitance. A control circuit controls generation of the force signal to alternate between at least two different frequencies and generate said output signal for each half cycle of the force signal.
Abstract:
An electronic device includes a touch screen controller. The touch screen controller is configured to asynchronously measure a capacitance between a sense line and a drive line of a sensing layer with respect to a horizontal sync signal of a display layer. In addition, the touch screen controller is also configured to disconnect from the sense line for a given period of time following a rising edge of the horizontal sync signal so as to reduce capacitive coupling of display noise from the horizontal sync signal to the sensing layer.
Abstract:
Embodiments are directed to microfluidic refill cartridges and methods of assembling same. The microfluidic refill cartridges include a microfluidic delivery member that includes a filter for filtering fluid passed therethrough. The filter may be configured to block particles above a threshold size to prevent blockage in the nozzles. For instance, particles having a dimension that is larger than the diameter of the nozzles can block or reduce fluid flow through the nozzle.
Abstract:
Methods and systems of text independent speaker recognition provide a complexity comparable to text dependent speaker recognition system. These methods and systems exploit the fact that speech is a quasi-stationary signal and simplify the recognition process based on this theory. The speaker modeling allows a speaker profile to be updated progressively with new speech samples that are acquired during usage over time by the speaker.
Abstract:
A capacitive sensing system includes a capacitive sensing panel with drive lines and sense lines. Each drive line includes a drive circuit. A code generator operates to generate modulation codes. A drive controller generates drive signals wherein each drive signal is modulated by one of the modulation codes. The generated drive signals are applied to the drive lines through the drive circuits. The drive controller operates to simultaneously generate the drive signals for application to a corresponding group of drive lines during a drive period. Separate groups of drive lines are sequentially driven with the same drive signals during drive periods that only partially overlap.
Abstract:
Methods and apparatus for determining rotor position in a motor including a rotor and stator windings. The method includes measuring inductive sense values for each pair of the stator windings by performing an inductive sense routine on the motor, measuring stator winding voltage values, induced by mutual inductance between windings, for each of the stator windings by performing a mutual inductance sensing routine on the motor, and determining the rotor position based on the inductive sense values and the stator winding voltage values.