Abstract:
A display device including a plurality of pixel electrodes arranged in a matrix including rows and columns and a plurality switching elements coupled with the pixel electrodes; a plurality of gate lines coupled with the switching elements and extending in a row direction, at least two gate lines assigned to a row; and a plurality of data lines coupled with the switching elements and extending in a column direction, a data line assigned to at least two columns, wherein each of the pixel electrodes has a first side and a second side that is farther from a data line than the first side, and the switching elements are disposed near the second sides of the pixel electrodes.
Abstract:
A scan driver drives a display device having a plurality of gate lines transferring scan signals, and a plurality of source lines transferring data signals. The scan driver includes a shift register and a multiple signal applying unit. The shift register includes a plurality of cascade-connected stages, each stage having an output terminal electrically connected to a respective one of the plurality of gate lines. The multiple signal applying unit applies a sub scan signal and a main scan signal. The sub scan signal and the main scan signal sequentially activate each of the plurality of gate lines. Therefore, the scan lines receive the scan signal twice, so that the liquid crystal capacitors electrically connected to the gate lines receive the data voltage twice. As a result, even though the time for charging the liquid crystal capacitors may be reduced, the liquid crystal capacitors may be fully charged to enhance display quality.
Abstract:
A gate driving circuit includes stages, the stages being cascaded and each including: a pull-up part which pulls up a gate voltage to a clock signal during a horizontal scanning period (1H); a carry part which pulls up a carry voltage to the clock signal during the horizontal scanning period (1H); a pull-up driving part connected to a control terminal (Q-node) common to the carry part and the pull-up part and which receives a previous carry voltage from a first previous stage to turn on the pull-up part and the carry part; and a ripple preventing part which prevents a ripple generated at a previous Q-node of a second previous stage based on a ripple generated at the Q-node of the carry part and the pull-up part.
Abstract:
In a gate driving unit and a display apparatus, a first gate driving circuit is connected to a first end of a plurality of gate lines, a second gate driving circuit is connected to a second end of the gate lines, and they are substantially simultaneously turned on. The first and second gate driving circuits apply a first gate signal having a first pre-charging period and a first active period, which is adjacent to the first pre-charging period, to odd-numbered gate lines and apply a second gate signal having a second pre-charging period and a second active period, which is adjacent to the second pre-charging period, to even-numbered gate lines.
Abstract:
A gate driving circuit has a first stage which includes: a pull-up driving unit which receives a first carry signal from a second stage and outputs a control signal having first, second, third and fourth voltages to a first node during a preliminary period, a gate active period, a first gate inactive period and a second gate inactive period, respectively; a pull-up unit which receives the control signal and outputs a gate-on signal to a second node during the gate active period; a carry output unit which receives the control signal and outputs a second carry signal to a third stage during the gate active period; and a pull-down unit which receives a gate-off signal and the second carry signal from the second stage and outputs the control signal having the fourth voltage level to the first node during the second gate inactive period.
Abstract:
The present invention provides a liquid crystal display (“LCD”), a method of manufacturing the same, and a method of repairing the same capable of obtaining a wide viewing angle and improving a success ratio of repair. The LCD includes a gate line, a first data line intersecting the gate line, a thin film transistor (“TFT”) connected with the gate line and the first data line, a pixel electrode connected with the TFT, a first conductive pattern partially overlapping with a first end of the pixel electrode, a second conductive pattern partially overlapping with a second end of the pixel electrode, and a storage capacitor, wherein at least one of the first conductive pattern and the second conductive pattern partially overlaps with the first data line adjacent to the first end of the pixel electrode and a second data line adjacent to the second end of the pixel electrode, respectively.
Abstract:
A liquid crystal display (“LCD”) includes a data interconnection line including a data line, a source electrode as a branch of the data line, and a drain electrode formed spaced apart from the source electrode, a semiconductor layer formed under the data interconnection line and connected to the source electrode and the drain electrode below the source electrode and the drain electrode and forming a channel region, and a gate interconnection line formed under the semiconductor layer and including a gate line intersecting the data line, the gate line extending in a first direction and the data line extending in a second direction, and a gate electrode branched from the gate line, wherein the gate line includes a first recess having a first width and a first length.
Abstract:
In a gate driver of a display device, a plurality of first stages each transmit a first gate signal having a first gate-on voltage to first gate lines, and a plurality of second stages each transmit a second gate signal having a second gate-on voltage to second gate lines and output a carry signal corresponding to the second gate signal. Each first stage outputs the first gate-on voltage based on a third gate-on voltage of the carry signal from a previous second stage, and each second stage outputs the second gate-on voltage based on the third gate-on voltage of the carry signal from the previous second stage.
Abstract:
A fire door includes an inner plate forming an inner side of the fire door; an outer plate opposing the inner plate to form an outer side of the fire door; adhesive layers applied to opposing surfaces of the inner and outer plates; a pair of reinforcing brackets vertically attached to opposite edge portions between both of the inner and outer plates; and a sound absorbing material filled in a space defined by the inner and outer plates and the reinforcing brackets. The inner and outer plates are made of a bonded steel plate, which includes a surface sheet exposed to the inner or outer side of the fire door, a backing sheet supporting the surface sheet, and an adhesive material interposed between the surface sheet and the backing sheet and bonding the surface sheet and the backing sheet together. The fire door has excellent sound absorbing and fireproof properties.
Abstract:
A liquid crystal display includes a backlight unit, a liquid crystal display panel, and first and second polarizers. The first polarizer is attached to a lower portion of the liquid crystal display panel to face the backlight unit, and the second polarizer is attached to an upper portion of the liquid crystal display panel to correspond to the first polarizer. The liquid crystal display panel includes a first optical layer that partially reflects light provided from the backlight unit, and the first polarizer includes a second optical layer to prevent the light reflected by the first optical layer from being re-reflected to the liquid crystal display panel.