Abstract:
A zero-crossing detector with effective offset cancellation includes a set of series connected capacitors and an amplifier having an input terminal. An offset capacitor is operatively connected between the amplifier and the set of series connected capacitors. A switch is operatively connected to the input terminal, and an offset sampling capacitor is operatively connected to the switch. The switch connects the offset sampling capacitor to the input terminal of the amplifier during a charge transfer phase.
Abstract:
An adhesive (co)polymers comprising: a) an isobutylene copolymer having pendent anhydride groups, b) a polyamine photobase generator and c) optionally a tackifier is described.
Abstract:
An organic electroluminescence (EL) device which has a rear substrate, an organic EL element formed on the rear substrate and having a laminate structure in which a first electrode, an organic layer and a second electrode are sequentially laminated, a front substrate coupled to the rear substrate via sealant to seal an internal space in which the organic EL element is accommodated, and a transparent nanoporous oxide layer having nanoporous oxide particles disposed in the internal space formed by the rear substrate and the front substrate. Since the organic electroluminescence device includes the transparent nanoporous oxide layer having the nanoporous oxide particles and pores, it has an improved lifetime by increased moisture and oxygen absorbing properties.
Abstract:
A circuit for a pixel site in an imaging array includes a light-detecting element to convert incident light to a photocurrent and a reset transistor, operatively connected to the light-detecting element, to reset a voltage associated with the light-detecting element. The reset transistor hard resets the voltage associated with the light-detecting element and soft resets the voltage associated with the light-detecting element after the generation of the hard reset of the voltage associated with the light-detecting element. A pixel voltage of a column or row line is also measured by hard resetting the column or row line voltage to a first predetermined voltage; soft resetting the column or row line voltage to a first pixel voltage; hard resetting the column or row line voltage to a second predetermined voltage; soft resetting the column or row line voltage to a second pixel voltage; and determining a difference between the first and second pixel voltages, the difference being the measured pixel voltage.
Abstract:
Provided are an organic electroluminescent device and a method of manufacturing the same. An organic electroluminescent device, comprising a rear substrate, an organic electroluminescent unit formed on one surface of the rear substrate and having a first electrode, an organic film, and a second electrode, and a front substrate joined to the rear substrate and having a porous oxide layer based on alumina on an inner surface of the front substrate. The alumina is hydrated amorphous alumina. The porous oxide layer is composed of hydrated amorphous alumina; hydrated amorphous alumina and silica; hydrated amorphous alumina, and one or more selected from alkaline metal oxide, alkaline earth metal oxide, metal halide, metal sulfate, and metal perchlorate, which are captured in a network of the alumina; or hydrated amorphous alumina, silica, and one or more selected from alkaline metal oxide, alkaline earth metal oxide, metal halide, metal sulfate, and metal perchlorate, which are captured in a network of the alumina and a network of the silica. The organic electroluminescent device may be used as a front emission type, a rear emission type, or a both-direction emission type display.
Abstract:
An organic electroluminescent device which has a low moisture permeability and an oxygen permeability. The organic electroluminescent device includes a substrate, an organic light-emitting unit having a sequentially stacked structure of a first electrode, an organic film, and a second electrode formed on a surface of the substrate, and an organic-inorganic composite film made of a dehydrated polycondensate of a hydrolyzed product of trialkoxy metal formed on an upper surface of the second electrode of the organic light-emitting unit. The organic-inorganic composite film simplifies a manufacture process and has high visible light transmittance. Therefore, the organic-inorganic composite film can be used as an intermediate layer of a front emission type organic electroluminescent device. Also, the organic-inorganic composite film has excellent prevention function of the entry of moisture and/or oxygen. Therefore, the encapsulation of the device is ensured even when a sealing substrate is not separately used, thereby decreasing the total thickness of the device and increasing the life span of the device.
Abstract:
A sampled-data analog circuit includes a level-crossing detector. The level-crossing detector controls sampling switches to provide a precise sample of the output voltage when the level-crossing detector senses the predetermined level crossing of the input signal. The level-crossing detection may be a zero-crossing detection. An optional common-mode feedback circuit can keep the output common-mode voltage substantially constant.
Abstract:
An organic electroluminescent device includes a substrate, an encapsulation substrate, an organic electroluminescent portion interposed between the substrate and the encapsulation substrate and a transparent moisture absorption layer. The transparent moisture absorption layer comprises at least one of a metal oxide and a metal salt with an average particle diameter of about 100 nm or less, a binder, and a dispersant. The transparent moisture absorption layer may be disposed in an internal space provided by the substrate and the encapsulation substrate and may be used in a front emission type organic electroluminescent device.
Abstract:
A circuit for a pixel site in an imaging array includes a light-detecting element to convert incident light to a photocurrent and a reset transistor, operatively connected to the light-detecting element, to reset a voltage associated with the light-detecting element. The reset transistor hard resets the voltage associated with the light-detecting element and soft resets the voltage associated with the light-detecting element after the generation of the hard reset of the voltage associated with the light-detecting element. A pixel voltage of a column or row line is also measured by hard resetting the column or row line voltage to a first predetermined voltage; soft resetting the column or row line voltage to a first pixel voltage; hard resetting the column or row line voltage to a second predetermined voltage; soft resetting the column or row line voltage to a second pixel voltage; and determining a difference between the first and second pixel voltages, the difference being the measured pixel voltage.
Abstract:
A reconfigurable ADC includes a plurality of reconfigurable blocks for allowing the ADC to provide a plurality of architectures. In one embodiment, the ADC can be configured to operate in a pipeline mode and a sigma-delta mode. This arrangement provides an ADC having a relatively large range of bandwidth and resolution.