Abstract:
Provided are an LNG storage container with an inner shell, which is capable of efficiently storing LNG or pressurized LNG (PLNG) pressurized at a predetermined pressure and supplying the LNG or PLNG to a consumption place, and capable of reducing manufacturing costs by minimizing the use of a metal having excellent low temperature characteristic, and a method for manufacturing the same. The LNG storage container includes: an inner shell configured to store LNG inside; an outer shell configured to enclose the outside of the inner shell such that a space is formed between the inner shell and the outer shell; a support installed in the space between the inner shell and the outer shell to support the inner shell and the outer shell; and a heat insulation layer part installed in the space between the inner shell and the outer shell and configured to reduce a heat transfer.
Abstract:
Provided is a fuel supply method for a marine structure using a high-pressure natural gas injection engine. BOG stored in a stored in the storage tank is compressed to a pressure of 12 to 45 bara (absolute pressure) and then reliquefied. A reliquefaction apparatus includes a cold box configured to exchange heat between a refrigerant and the BOG, a compression unit configured to compress the refrigerant heated by the cold box, an expansion unit configured to expand the compressed refrigerant to drop the temperature thereof, and a plurality of gas-liquid refrigerant separators configured to separate the refrigerant into a gaseous refrigerant and a liquid refrigerant. A gaseous refrigerant and a liquid refrigerant separated by the gas-liquid refrigerant separator disposed at an upstream side are again mixed and supplied to the gas-liquid refrigerant separator disposed at the most downstream among the plurality of gas-liquid refrigerant separators.
Abstract:
Disclosed is an apparatus for containing LNG. The apparatus includes an LNG tank containing liquid phase LNG and boil-off gas of LNG, and an circulating device. The circulating device includes an intake port and a discharge port. The circulating device further includes an flowing pathway from the intake port to the discharge port that does not include a forced LNG liquefying device. The intake port is located in an upper portion of the LNG tank, and the discharge port is located in a lower portion of the LNG tank substantially lower than the intake port. The circulating device is configured to suction, through the intake port, boil-off gas from the upper portion of the LNG tank and to discharge boil-off gas, through the discharge port, to the lower portion of the LNG tank.
Abstract:
A fuel gas supply system of a vessel, such as an LNG carrier, is provided for supplying fuel gas to a high-pressure gas injection engine of an LNG carrier, wherein LNG is extracted from an LNG storage tank of the LNG carrier, compressed at a high pressure, gasified, and then supplied to the high-pressure gas injection engine. In one embodiment, the system includes a boil-off gas reliquefaction apparatus for reliquefying boil-off gas generated in the LNG tank.
Abstract:
A fuel gas supply system of a vessel, such as an LNG carrier, is provided for supplying fuel gas to a high-pressure gas injection engine of an LNG carrier, wherein LNG is extracted from an LNG storage tank of the LNG carrier, compressed at a high pressure, gasified, and then supplied to the high-pressure gas injection engine. In one embodiment, the system includes a boil-off gas reliquefaction apparatus for reliquefying boil-off gas generated in the LNG tank.
Abstract:
A method and apparatus for processing natural gas composed of various hydrocarbon components for transportation of the natural gas to a demand side without separation of the hydrocarbon components, such that the natural gas can be used by consumers after being separated into the hydrocarbon components according to the needs of the demand side. The apparatus includes a storage tank and a hydrocarbon liquefied gas mixture accommodated in the storage tank. The mixture has hydrocarbon components composed of methane, ethane, propane and butane, and is produced by liquefying raw natural gas without changing the relative ratio of methane, ethane, propane and butane in the raw natural gas immediately after extraction from the gas well. The method and apparatus can be applied to floating marine structures.
Abstract:
Disclosed is a composition for reprogramming somatic cells to generate embryonic stem cell-like cells, comprising: a) a Bmi1 (B cell-specific Moloney murine leukemia virus integration site 1) protein or a nucleic acid molecule coding for Bmi1; and b) an Oct4 protein or a nucleic acid molecule coding for Oct4. Also, a method is provided for reprogramming somatic cells to generate embryonic stem cell-like cells using the composition. In addition to reducing the number of the genetic factors conventionally needed, the composition and method allow the generation of pluripotent embryonic stem cell-like cells which have high potential in the cell therapy of various diseases.
Abstract:
Disclosed is a liquefied natural gas composition. The composition contains methane, ethane and propane and butane. The composition contains a substantial amount of butane while being substantially free of hydrocarbon molecules larger than butane.
Abstract:
Disclosed is a method and apparatus for adjusting heating value of natural gas, wherein components having high heating value are separated from natural gas consisting of various hydrocarbon components to reduce heating value of natural gas supplied to the markets. The method includes heating liquefied natural gas (LNG), separating the LNG heated and partially gasified into a gaseous component having low heating value and a liquid component having high heating value.
Abstract:
A fuel gas supply system of a vessel, such as an LNG carrier, is provided for supplying fuel gas to a high-pressure gas injection engine of an LNG carrier, wherein LNG is extracted from an LNG storage tank of the LNG carrier, compressed at a high pressure, gasified, and then supplied to the high-pressure gas injection engine. In one embodiment, the system is operated to supply fuel to an MEGI engine.