Abstract:
An apparatus and method of detecting bio molecular by measuring a variation of an electrical characteristic of a circuit having an inductance device and a capacitance device. The bio molecular detection method comprises providing a signal converting unit having at least one inductance device and at least one capacitance device connected with each other, disposing a biochip, which has capturing probe biomolecules attached to a substrate, at a location in the signal converting unit, and measuring an electrical characteristic of the signal converting unit, performing a coupling reaction of the biochip and a sample to be analyzed; and measuring an electrical characteristic of the signal converting unit after the coupling reaction.
Abstract:
A metal wiring method for an undercut in a MEMS packaging process includes disposing a MEMS element on a silicon substrate, welding a glass wafer to an upper portion of the silicon substrate having the MEMS element disposed thereon, the glass wafer having a hole formed therein for connecting a metal wiring, depositing a thin metal film for the metal wiring in the hole, and ion-mealing the deposited thin metal film. By the ion-mealing, the method is capable of connecting a metal wiring to a via hole having an undercut.
Abstract:
Provided is a bulk acoustic wave resonator (BAWR). The BAWR may include a first electrode, a piezoelectric layer disposed on the first electrode, a second electrode disposed on the piezoelectric layer. In various aspects, at least one of the first electrode, the piezoelectric layer, and the second electrode are formed of a carbon-based material.
Abstract:
Disclosed is a bulk acoustic wave resonator (BAWR). The BAWR includes a bulk acoustic wave resonance unit with a first electrode, a second electrode, and a piezoelectric layer. The piezoelectric layer is disposed between the first electrode and the second electrode. An air edge is formed at a distance from a center of the bulk acoustic wave resonance unit.
Abstract:
A MEMS (Micro Electro Mechanical System) device and a method of manufacturing the same, in which an detection indicator is formed on a chamber layer stacked on a substrate such that a user easily inspects whether the chamber layer has a required thickness. The MEMS device can include two detection indicators that are formed on the chamber layer and have different depth from each other, or an detection indicator which is formed on the chamber layer and has a tapered sectional shape in which an upper surface of the detection indicator is gradually narrowed in a downward direction such that a user can easily inspect whether the chamber layer has a required thickness. The user can precisely determine whether the chamber layer is planarized to a required thickness by planarizing the detection indicator formed on the chamber layer, and inspecting the detection indicator by using an optical microscope, thereby facilitating inspection for a thickness of the chamber layer.
Abstract:
A thermal inkjet printhead includes a plurality of bonding pads to which an external voltage is applied, a plurality of common wires connected to the each of the bonding pads, respectively, a plurality of individual wires connected to each of the common wires, respectively, and heaters connected to each of the individual wires, respectively, to generate ink bubbles by heating ink, wherein each of the common wires includes a first metal layer and a first metal bump which are formed on the first metal layer.
Abstract:
A bio sample processing apparatus and method using vacuum chambers in which a bio sample is injected into a first vacuum chamber connected with one end of a bio processor and, after processing, is ejected into a second vacuum chamber connected with the other end of the bio processor. The vacuum chambers and bio processor are connected with each other to form an environment with a pressure lower than atmospheric pressure, and the bio sample moves toward the second vacuum chamber due to the pressure difference created by the injection of the bio sample into the first vacuum chamber.
Abstract:
A wafer level package for a surface acoustic wave device and a fabrication method thereof include a SAW device formed with a SAW element on an upper surface of a device wafer; a cap wafer joined on an upper part of the SAW element; a cavity part housing the SAW element between the cap wafer and the SAW device; a cap pad formed on an upper surface of the cap wafer; and a metal line formed to penetrate through the cap wafer to electrically connect the cap pad and the SAW element, the device wafer and the cap wafer being made of the same materials.
Abstract:
An ink feedhole of an inkjet printhead and a method of forming the same includes an ink feedhole that penetrates a substrate and has a width that narrows in an upper direction of the substrate, wherein at least one internal wall of the ink feedhole has a plurality of steps and inclines with respect to a surface of the substrate.
Abstract:
An inkjet print head includes a substrate formed with a feed hole through which ink is transferred, and a notch prevention layer covering an area on the substrate where the feed hole is to be formed. Plasma electrons flown into the feed hole while the hole is formed on the substrate through dry etching can move through the notch prevention layer. As a result, corrosion of the substrate around the feed hole by the electrons can be prevented, thereby achieving a uniform width of the feed hole.