Abstract:
A system including tubing and a filter configured to be fluidly coupled to a vacuum source and to a heater/cooler unit by the tubing. The filter includes a filter container having negative air pressure in the filter container provided by the vacuum source to pull aerosol from the heater/cooler unit into the filter container and eliminate and/or reduce the aerosol emitted from the heater/cooler unit.
Abstract:
In certain embodiments, a multiple component heart valve prosthesis includes an abutment ring and a removable bioprosthetic heart valve. The abutment ring is configured for attachment at a heart valve annulus location and includes a locking system. The removable bioprosthetic heart valve includes a valve frame and at least one locking feature. The at least one locking feature is configured to be received by the locking system. The bioprosthetic heart valve can be rotated relative to the abutment ring such that the at least one locking feature transitions from a disengaged position to a first engaged position. When in the disengaged position the bioprosthetic heart valve may be removed from the abutment ring, and when rotated to the engaged position the bioprosthetic heart valve is restrained from axial movement relative to the abutment ring.
Abstract:
An implant device (V), such as a heart valve, for implantation in an animal body includes an annular structure and one or more elongated anchoring members deployable to a deployed condition for insertion into an animal body. The anchoring members are retractable from the deployed condition to a rolled up condition wherein the anchoring members protrude radially out from the annular structure of the device (V) to provide anchoring to a body structure (AS) of an animal. In the rolled up condition the anchoring members at least partly protrude axially of the annular structure of the device (V).
Abstract:
A blood processing apparatus may include a heat exchanger and a gas exchanger. At least one of the heat exchanger and the gas exchanger may be configured to impart a radial component to blow flow through the heat exchanger and/or gas exchanger. The heat exchanger may be configured to cause blood flow to follow a spiral flow path.
Abstract:
A collapsible valve prosthesis includes an armature and a set of prosthetic valve leaflets supported by the armature. The armature is expandable from a contracted condition to an expanded condition for anchoring at an annulus of a natural valve site, and includes a tubular intra-annular portion defining a blood flow lumen having an inflow side and an outflow side. The tubular intra-annular portion supports the prosthetic valve leaflets in the blood flow lumen and is provided with outward formations for coupling with the natural valve site. The armature includes an over-annular portion linked to the intra-annular portion to extend collar-like over the annulus of the natural valve site at the inflow side of the blood flow lumen. The armature may also include an under-annular portion to extend collar-like at the outflow side of the blood flow lumen. The prosthesis may permit mitral valve replacement (MVR) without removing the native valve leaflets and the chordae tendineae.
Abstract:
A prosthesis for implantation at an implantation site proximate a native aortic valve, the implantation site including a valve annulus and a plurality of Valsalva sinuses located distal to the valve annulus. The prosthesis comprises an armature and a valve connected to the armature, wherein the armature includes a proximal portion configured for anchorage to the valve annulus, a distal portion configured to be positioned distal to the Valsalva sinuses when the proximal portion is anchored to the valve annulus, and first, second and third Valsalva sinus anchors each extending between and connecting the proximal and distal portions and arching radially outward between the proximal portion and the distal portion. The Valsalva sinus anchors are positioned so that each can extend into and engage a wall of a different one of the Valsalva sinuses
Abstract:
A method of treating a biological tissue for biological prostheses includes steps of fixation of the biological tissue via a fixing solution including glutaraldehyde and detoxification of the fixed biological tissue via treatment with a detoxifying solution. The detoxification step includes one or both of eliminating phospholipids via treatment with an elimination solution and a treatment with a detoxifying solution. The elimination solution includes 1,2-octanediol and ethanol. The detoxifying solution includes taurine or homocysteic acid.
Abstract:
Techniques for reaching the interior of the heart, such as for aortic valve replacement, can combine elements of percutaneous implantation methods and elements of surgical implantation methods. In some instances, aortic valve replacement may include a dual transapical approach in which a transfemoral approach is used to reach the apex of the patient's heart from inside the left ventricle while a minimally invasive surgical procedure provides access to the exterior of the apex via an intercostal approach.
Abstract:
A support device for implanting a stentless heart valve prosthesis having three leaflets adapted for coapting and defining three corresponding commissures is disclosed. The support device includes a shaft defining a manipulation axis, the shaft having a proximal portion and a distal portion, and three support formations integrally formed and extending from the proximal end of the shaft, the support formations angularly distributed about the manipulation axis of the shaft, such that each of the support formations correspond to locations of each of the commissures of the stentless heart valve prosthesis. The shaft includes a connection portion flexibly connecting the shaft and the support formations to permit a displacement of the manipulation axis with respect to the support formations. The shaft, the plurality of support formations and the connection portion are integrally formed from a single tubular element.
Abstract:
A heart valve prosthesis includes an expandable prosthetic valve including three valve leaflets coupled to an anchoring structure. The anchoring structure includes an annular member and a plurality of arms movably coupled to the annular member at one end. The free ends of the arms extend radially away from the prosthesis toward a valve annulus. The arms are configured to fit in a space defined between an open native valve leaflet and a wall of a valve sinus. The arms are sufficiently resilient such that they resist downward movement in response to pressure exerted on the prosthesis, facilitating anchorage and stabilization of the prosthesis at the implantation site.