Abstract:
A solar cell mode and a method for manufacturing the same are disclosed. The solar battery module in accordance with the present invention includes a plurality of solar cells arranged in row and column directions; and a conductive ribbon electrically connecting the plurality of solar cells, wherein each of the solar cells has a structure in which a first photoelectric element including a polycrystalline semiconductor layer and a second photoelectric element including an amorphous semiconductor layer are stacked.
Abstract:
A solar cell and a manufacturing method thereof are disclosed. The solar cell in accordance with the present invention includes a substrate 100; a lower electrode 111a formed on the substrate 100; a photoelectric element unit 200a including a polycrystalline photoelectric element 210 formed on the lower electrode 111a and formed by stacking a plurality of polycrystalline semiconductor layers 211a, 212a, and 213a, and a amorphous photoelectric element 220 formed on the polycrystalline photoelectric element 210 and formed by stacking a plurality of amorphous semiconductor layers 221, 222, and 223; and an upper electrode 400 formed on the photoelectric element unit 200a.
Abstract:
A method for forming a semiconductor device includes forming a gate pattern over a silicon substrate, forming gate spacers over both sidewalls of the gate pattern, forming a dummy gate spacer over a sidewall of each one of the gate spacers, forming a recess region having inclined sidewalls extending in a direction to a channel region under the gate pattern by recess-etching the silicon substrate, filling the recess region with an epitaxial film, which becomes a source region or a drain region, through a selective epitaxial growth process, and removing the dummy gate spacer.
Abstract:
An image size conversion apparatus and an image size conversion method are provided. The image size conversion apparatus includes an area detector which detects an interested area having a certain image distinguished over a general image from an input image, a scale ratio adjustor which adjusts a scale ratio for the interested area detected by the area detector, and a scaler to perform scaling for the input image according to the adjusted scale ratio. Accordingly, the scale ratio can be adjusted according to features of the input image so that an image without distortion can be displayed on a screen.
Abstract:
In a method of forming a semiconductor device, a feature layer is provided on a substrate and a mask layer is provided on the feature layer. A portion of the mask layer is removed in a first region of the semiconductor device where fine features of the feature layer are to be located, the mask layer remaining in a second region of the semiconductor device where broad features of the feature layer are to be located. A mold mask pattern is provided on the feature layer in the first region and on the mask layer in the second region. A spacer layer is provided on the mold mask pattern in the first region and in the second region. An etching process is performed to etch the spacer layer so that spacers remain at sidewalls of pattern features of the mold mask pattern, and to etch the mask layer in the second region to provide mask layer patterns in the second region. The feature layer is etched using the mask layer patterns as an etch mask in the second region and using the spacers as an etch mask in the first region to provide a feature layer pattern having fine features in the first region and broad features in the second region.
Abstract:
A lens barrel assembly of a camera module and a laser apparatus for assembling the lens barrel assembly are provided. The lens barrel assembly of a camera module includes: at least one lens; a barrel provided with a lens exposing hole having a predetermined size which is formed to penetrate a central portion of a closed upper surface of the barrel, wherein the lens is inserted from an lower opening of the barrel toward the lens exposing hole; and a stopping protrusion which is formed by fuse-securing a fused material on a boundary region between an outer circumference of the lens and an opened inner surface of the barrel by illumination of a laser beam on the opened inner surface of the barrel.
Abstract:
In a method of forming a semiconductor device, a feature layer is provided on a substrate and a mask layer is provided on the feature layer. A portion of the mask layer is removed in a first region of the semiconductor device where fine features of the feature layer are to be located, the mask layer remaining in a second region of the semiconductor device where broad features of the feature layer are to be located. A mold mask pattern is provided on the feature layer in the first region and on the mask layer in the second region. A spacer layer is provided on the mold mask pattern in the first region and in the second region. An etching process is performed to etch the spacer layer so that spacers remain at sidewalls of pattern features of the mold mask pattern, and to etch the mask layer in the second region to provide mask layer patterns in the second region. The feature layer is etched using the mask layer patterns as an etch mask in the second region and using the spacers as an etch mask in the first region to provide a feature layer pattern having fine features in the first region and broad features in the second region.
Abstract:
A first mask layer pattern including a plurality of parallel line portions is formed on an etch target layer on a semiconductor substrate. A sacrificial layer is formed on the first mask layer pattern and portions of the etch target layer between the parallel line portions of the first mask layer pattern. A second mask layer pattern is formed on the sacrificial layer, the second mask layer pattern including respective parallel lines disposed between respective adjacent ones of the parallel line portions of the first mask layer pattern, wherein adjacent line portions of the first mask layer pattern and the second mask layer pattern are separated by the sacrificial layer. A third mask layer pattern is formed including first and second portions covering respective first and second ends of the line portions of the first mask layer pattern and the second mask layer pattern and having an opening at the line portions of the first and second mask layer patterns between the first and second ends. The sacrificial layer and the etch target layer are etched using the third mask layer pattern, the first mask layer pattern and the second mask layer pattern as a mask to thereby form a plurality of parallel trenches in the etch target layer between the line portions of the first and second mask layer patterns. Conductive lines may be formed in the trenches.
Abstract:
A printed circuit board and a manufacturing method of the same. The method includes forming a circuit board by selectively positioning a heat release layer among multiple insulation layers that have circuit patterns formed on their surfaces, perforating a through-hole that penetrates through one side and the other side of the circuit board, forming a metal film over the heat release layer exposed at an inner wall surface of the through-hole, and forming a plating layer by depositing a conductive metal over an inner wall of the through-hole. By having the heat release layer selectively inserted inside the circuit board, the heat releasing effect may be improved, and the bending strength may be increased. Moreover, a reliable electrical connection can be implemented between the heat release layer and the circuit pattern, making it possible to utilize the heat release layer as a power supply layer or a ground layer.
Abstract:
Disclosed is a radiant heat printed circuit board, which has improved heat-radiating properties and reliability, and a method of fabricating the same.