Abstract:
The present invention is related to a technology for grasping the number of a plurality of terminals of a client using a Cookie in a private network in which plural terminals are shared by redirecting a session which is to be connected to a Web by analyzing a TCP/IP packet, detecting the accurate number of a plurality of terminals of a client using an Internet, and making the accurate number as a DB, and selectively permitting or blocking a connection to Internet according to TCP/IP by using the Cookie pool information of a DB type and JOB when the users configuring and using a private network connect to the Internet at the same time.
Abstract:
Provided is a thin-film transistor (TFT) substrate. The TFT substrate includes: an insulating substrate; a semiconductor pattern which is formed on the insulating substrate, the semiconductor pattern having a top surface and a bottom surface; a source electrode and a drain electrode which are disposed on the top and bottom surfaces of the semiconductor pattern, respectively; a gate electrode which is disposed alongside the semiconductor pattern with a gate insulating film interposed therebetween; a data line which is connected to the source electrode and extends in a first direction; a gate line which is connected to the gate electrode and extends in a second direction; and a pixel electrode which is connected to the drain electrode and is formed in a pixel region.
Abstract:
The present disclosure relates to a thin film transistor array panel and a manufacturing method thereof. The method comprises: forming a thin film transistor on a substrate; forming a color filter adjacent to the thin film transistor and over the same substrate; depositing a first passivation layer on the color filter; coating a photosensitive film on the first passivation layer and exposing the photosensitive film to light using a first photomask to form a first photosensitive film pattern that comprises a first portion and a second portion that is thicker than the first portion, the first photosensitive film pattern exposing the first passivation layer around a circumference of the second portion; removing the exposed first passivation layer using the first photosensitive film pattern as an etch mask; blanket etching a whole surface of the first photosensitive film pattern until the first portion is removed to form a second photosensitive film pattern; depositing a conductive layer on the second photosensitive film pattern; and removing the second photosensitive film pattern to thereby selectively lift off portions of the conductive layer where a left behind portion forms a pixel electrode.
Abstract:
Disclosed is a liquid crystal display device including a first substrate where pixel areas are defined, a second substrate facing the first substrate, liquid crystals aligned between the first and second substrates, and spacers that maintain a gap between the first and second substrates. The pixel areas are divided into a plurality of domains along the alignment direction of the liquid crystals by way of domain dividers. Optical characteristics are compensated in different domains, so that the viewing angle of the liquid crystal display device is increased. The display quality of the liquid crystal display device is improved by adjusting the shape and position of the domain dividers and the spacers.
Abstract:
A display panel includes a first substrate, a second substrate arranged opposite to the first substrate, and a column spacer formed on at least one of the first substrate or the second substrate to maintain a space between the first and second substrates, wherein the column spacer has a bottom side having a shape of a concave-sided polygon.
Abstract:
A liquid crystal display and a method of manufacturing the same include: a first plate having a thin film transistor, a second plate having an insulating substrate having a plurality of spacer members, the spacer members being disposed on the insulating substrate, preventing light leakage from the first plate and maintaining a predetermined distance between the first plate and the second plate, and a liquid crystal layer interposed between the first plate and the second plate and having liquid crystal molecules aligned in a predetermined direction.
Abstract:
Disclosed herein is a photoelectric conversion device having a semiconductor substrate including a front side and back side, a protective layer formed on the front side of the semiconductor substrate, a first non-single crystalline semiconductor layer formed on the back side of the semiconductor substrate, a first conductive layer including a first impurity formed on a first portion of a back side of the first non-single crystalline semiconductor layer, and a second conductive layer including the first impurity and a second impurity formed on a second portion of the back side of the first non-single crystalline semiconductor layer.
Abstract:
The present invention relates to a system and method for authenticating, monitoring, and managing all terminals connected to a wireless/wired network to use Internet. A shared terminal management system comprises a management server, a charging server, a central server, a central authentication G/W server, and a proxy server, and assigns a terminal identification value for every terminal that uses Internet, authenticates terminals by reading and analyzing the assigned terminal identification value, monitors and manages shared terminals used as being connected to one line to classify lines into a basic line and an additional line, and charges for the additional line. The shared terminal identification system for identifying and managing terminals connected to one Internet line comprises a subscriber line authentication unit, a packet collecting unit, a first packet analyzing unit, an element packet transmission unit, a data management unit and a terminal determining unit. The shared terminal processing method for managing the shared terminals comprises the following steps: detecting users of a sharing device; selecting target users for sharing devices; transmitting a notification; applying for an additional terminal service subscription; and ceasing the connection to the Internet.
Abstract:
A solar cell includes a semiconductor substrate, a first intrinsic semiconductor layer and a second intrinsic semiconductor layer on the semiconductor substrate, the first intrinsic semiconductor layer and the second intrinsic semiconductor layer being spaced apart from each other, a first conductive semiconductor layer and a second conductive semiconductor layer respectively disposed on the first intrinsic semiconductor layer and the second intrinsic semiconductor layer, and a first electrode and a second electrode, each including a bottom layer on the first conductive semiconductor layer and the second conductive semiconductor layer, respectively, the bottom layer including a transparent conductive oxide, and an intermediate layer on the bottom layer, the intermediate layer being including copper.
Abstract:
A photovoltaic device includes a semiconductor substrate; an amorphous first conductive semiconductor layer on a first region of a first surface of the semiconductor substrate and containing a first impurity; an amorphous second conductive semiconductor layer on a second region of the first surface of the semiconductor substrate and containing a second impurity; and a gap passivation layer located between the first region and the second region on the semiconductor substrate, wherein the first conductive semiconductor layer is also on the gap passivation layer.