Abstract:
Disclosed is a vessel for melting and casting meltable materials. The vessel may be a surface temperature regulated vessel for providing a substantially non-wetting interface with the molten materials. In one embodiment, the vessel may include one or more temperature regulating channels configured to flow a fluid therein for regulating a surface temperature of the vessel such that molten materials are substantially non-wetting at the interface with the vessel. Disclosed also includes systems and methods for melting and casting meltable materials using the vessel.
Abstract:
Disclosed is a vessel for melting and casting meltable materials. The vessel may be a surface temperature regulated vessel for providing a substantially non-wetting interface with the molten materials. In one embodiment, the vessel may include one or more temperature regulating channels configured to flow a fluid therein for regulating a surface temperature of the vessel such that molten materials are substantially non-wetting at the interface with the vessel. Disclosed also includes systems and methods for melting and casting meltable materials using the vessel.
Abstract:
Various embodiments provide systems and methods for casting amorphous alloys. Exemplary casting system may include an insertable and rotatable vessel configured in a non-movable induction heating structure for melting amorphous alloys to form molten materials in the vessel. While the molten materials remain heated, the vessel may be rotated to pour the molten materials into a casting device for casting them into articles.
Abstract:
Described herein is a method of melting a bulk metallic glass (BMG) feedstock, comprising: heating at least a portion of the BMG feedstock to temperatures slightly below a solidus temperature of the BMG, wherein the portion remains a solid at the temperatures slightly below the solidus temperature and wherein a temperature distribution of the portion is essentially uniform; heating the portion of the BMG feedstock to temperatures above a liquidus point.
Abstract:
Various embodiments provide apparatus and methods for injection molding. In one embodiment, a constraining plunger may be configured in-line with an injection plunger to transfer a molten material from a melt zone and into a mold. The constraining and injection plungers are configured to constrain the molten material there-between while moving. The constrained molten material can be controlled to have an optimum surface area to volume ratio to provide minimized heat loss during the injection molding process. The system can be configured in a longitudinal direction (e.g., horizontally) for movement between the melt zone and mold along a longitudinal axis. A molded bulk amorphous object can be ejected from the mold.
Abstract:
Described herein is a method of melting a bulk metallic glass (BMG) feedstock, comprising: feeding the BMG feedstock into a crucible; melting a first portion of the BMG feedstock to form molten BMG, while maintaining a second portion of the BMG feedstock solid; wherein the second portion and the crucible hold the molten BMG.
Abstract:
A metal enclosure has a surface region which is coated with cladding material using a laser cladding process. The metal enclosure can form at least a portion of an electronic device housing. All or part of one or more surfaces of the enclosure can be coated with cladding material. The coating of cladding material can be varied at selective regions of the enclosure to provide different structural properties at these regions. The coating of cladding material can be varied at selective regions to provide contrast in cosmetic appearance.
Abstract:
The disclosure provides members formed from multiple layers as well as enclosures and electronic devices that include the members. The members include glass members formed from multiple layers of glass. In some cases, the members include a protruding feature provided over a camera assembly of the electronic device. The member may define one or more through-holes that extend through the protruding feature. The protruding feature may define a textured region that may be configured to provide a matte or glossy appearance.
Abstract:
An electronic device may have a display for displaying images. The display may be coupled to a housing on a front face of the device. The housing may have a transparent portion on an opposing rear face of the device. The electronic device may have structures with an adjustable appearance. The adjustable-appearance structures may include a mask with openings or other mask elements and a corresponding overlapped patterned layer containing an array of visual elements. The visual elements may have different appearances, so that movement of the mask relative to the patterned layer changes the appearance of the adjustable-appearance structures. The state of the adjustable-appearance structure may be changed during use of the device by a user or may be adjusted then fixed during manufacturing.
Abstract:
A housing or enclosure for an electronic device is formed from a shell and chassis may positioned along an interior of the shell. The shell may be formed from a hard or cosmetic material and the chassis may be formed from a machinable material. The chassis may define one or more machined surfaces that are configured to receive or mount a component of the electronic device.