Abstract:
A method for manufacturing a flexible display panel and the flexible display device are disclosed. The method for manufacturing the flexible display panel includes: forming a substrate, a flexible display and an overcoat layer on a support substrate in sequence; flipping over so that one side provided with the support substrate is placed upward; stripping off the support substrate; coating a curable material on a surface obtained after the support substrate is stripped off; and performing a curing process so that the coated curable material is cured to form a protective film. The method for manufacturing the flexible display panel can form the protective film without adopting laminating/bonding devices, is simple and easy, and does not require the vacuum defoamation process subsequently.
Abstract:
The embodiments of the invention provide a conductive composition and a method for producing the same, a color filter and a method for producing the same. The invention relates to the display technology field, and can simplify the process for producing the transparent conductive layer, and reduce the production cost; the conductive composition comprises a modified epoxy acrylic resin, a polyurethane acrylic resin, a polyaniline, a photo initiator, a fluorine-containing acrylate monomer, and optionally a filler and an auxiliary agent; wherein, in terms of weight ratio, the modified epoxy acrylic resin comprises 15-30 parts; the polyurethane acrylic resin comprises 10-20 parts; the polyaniline comprises 15-30 parts; the photo initiator comprises 2-4 parts; the fluorine-containing acrylate monomer comprises 15-35 parts; the filler comprises 0-25 parts; and the auxiliary agent comprises 0-8 parts; the conductive composition is useful for producing a display device.
Abstract:
A preparation method of a display apparatus and the display apparatus are provided, the method and the apparatus are relating to a field of display technologies, an edge of at least a side of a flexible display module of the display apparatus is bent to a back side of the flexible display module to form a first bending portion; the preparation method includes providing a flexible display assembly, which includes a flexible display module and a first supporting plate fitted to a display surface of the flexible display module; the first supporting plate is made of a rigid material; an edge of at least a side of the first supporting plate is bent toward a side where the flexible display module is located to form a second bending portion.
Abstract:
A flexible display device includes a flexible substrate; a display layer, disposed on the flexible substrate; a reinforcement layer, disposed on a side of the display layer distal to the flexible substrate; and a protective layer, disposed on a side of the reinforcement layer distal to the flexible substrate; wherein material of the reinforcement layer comprises glass and a thickness of the reinforcement layer ranges from 10 μm to 150 μm.
Abstract:
A display apparatus and an electronic device relating to the field of display technologies are provided. The display apparatus includes: a first housing, one end of which includes an opening; a second housing slidably connected to the first housing and configured to slide out of a cavity of the first housing via the opening of the first housing; a flexible display screen configured to slide out of the cavity of the first housing along with the second housing when the second housing slides out of the cavity of the first housing; and at least one elastic assembly configured to provide an elastic force to the second housing when the second housing slides out of the cavity of the first housing so that a second lateral outer surface is kept flush with the first lateral outer surface.
Abstract:
A flexible display substrate and a manufacturing method therefor, and a display apparatus, for relieving the problem that it is difficult to bend the flexible display substrate in a bending region to damage an upper circuit. The flexible display substrate comprises a back film, a first flexible base substrate located above the back film, and a second flexible base substrate located on one side of the first flexible base substrate facing away from the back film. The flexible display substrate has a bending region. An auxiliary layer is further provided between the first flexible base substrate and the second flexible base substrate. At least part of the auxiliary layer in the bending region can be decomposed in a preset condition, wherein the other film layers except the auxiliary layer are maintained at the original status in the preset condition.
Abstract:
A display panel and a display device are provided. The display panel includes a display assembly, a transparent cover plate, and a fingerprint recognition module situated between the display assembly and the transparent cover plate. An optical film is arranged at a side of the fingerprint recognition module away from the display assembly. The optical film is configured to indicate a fingerprint recognition region on the display panel. A color of the optical film varies as an observation angle changes.
Abstract:
The present disclosure relates to the field of display, in particular to a composite cover film and a flexible display device. The composite cover film comprises a polyimide layer, and a first hard coating and a first transparent optical adhesive layer disposed on two sides of the polyimide layer, respectively, wherein at least one of the first hard coating and the first transparent optical adhesive layer contains a nanoscale colorant. The present disclosure further relates to a flexible display device comprising a flexible display panel and the composite cover film disposed on a light-exiting side of the flexible display panel.
Abstract:
The embodiments of the invention provide a conductive composition and a method for producing the same, a color filter and a method for producing the same. The invention relates to the display technology field, and can simplify the process for producing the transparent conductive layer, and reduce the production cost; the conductive composition comprises a modified epoxy acrylic resin, a polyurethane acrylic resin, a polyaniline, a photo initiator, a fluorine-containing acrylate monomer, and optionally a filler and an auxiliary agent; wherein, in terms of weight ratio, the modified epoxy acrylic resin comprises 15-30 parts; the polyurethane acrylic resin comprises 10-20 parts; the polyaniline comprises 15-30 parts; the photo initiator comprises 2-4 parts; the fluorine-containing acrylate monomer comprises 15-35 parts; the filler comprises 0-25 parts; and the auxiliary agent comprises 0-8 parts; the conductive composition is useful for producing a display device.
Abstract:
A display device and a method for manufacturing a display device are provided. The method includes: forming a material layer on a first face of a display panel; forming a touch panel and a polarizer sequentially on a second face of the display panel, the display panel having an end projecting beyond lateral faces of the touch panel and the polarizer; removing a portion of the material layer located in a first area on the display panel, the first area being located out of an effective display region of the display panel; and bending the first area of the display panel towards the first face such that a second area and a third area of the display panel are located on both sides of the material layer respectively, wherein the second area and the third area are connected to two ends of the first area respectively.