摘要:
The present application provides a screen method for intaglio printing, comprising: dividing multiple classes of regions according to a brightness range; and generating screen dots with various screen patterns for the grouped classes of regions. The present application also provides a screen device for intaglio printing, comprising: a dividing module configured to group multiple classes of regions according to the brightness range; and a generating module configured to generate screen dots with various screen patterns for the grouped classes of regions. Since multiple kinds of screen patterns are applied in the technical solutions in present application, the problem, i.e., water ripple will occur in the prior art, may be addressed, so as to improve the quality of printing.
摘要:
A process for carrying out at least two unit operations in series, the process comprising the step of: (a) directing a feed stream into an integrated assembly which comprises a first microchannel unit operation upon at least one chemical of the feed stream to generate a distributed output stream that exits the first microchannel unit operation in a first set of discrete microchannels isolating flow through the discrete microchannels; and (b) directing the distributed output stream of the first microchannel unit operation into a second microchannel unit operation as a distributed input stream, to continue isolating flow between the first set of discrete microchannels, and conducting at least one operation upon at least one chemical of the input stream to generate a product stream that exits the second microchannel unit operation, where the first microchannel unit operation and the second unit operation share a housing.
摘要:
Methods form an integrated circuit structure by forming at least a portion of a plurality of devices within and/or on a substrate and patterning trenches in an inter-layer dielectric layer on the substrate adjacent the devices. The patterning forms relatively narrow trenches and relatively wide trenches. The methods then perform an angled implant of a compensating material into the trenches. The angle of the angled implant implants a greater concentration of the compensating material in the regions of the substrate at the bottom of the wider trenches relative to an amount of compensating material implanted in the regions of the substrate at the bottom of the narrower trenches. The methods then deposit a metallic material within the trenches and heat the metallic material to form silicide from the metallic material.
摘要:
The present invention relates to compounds of Formula (I) and/or Formula (Ia): and to their salts, pharmaceutical compositions, methods of use, and methods for their preparation. These compounds inhibit ALK kinase activity, and thus may be used for the treatment of cancer.
摘要:
An MOSFET device having a Silicide layer of uniform thickness, and methods for its fabrication, are provided. One such method involves depositing a metal layer over wide and narrow contact trenches on the surface of a silicon semiconductor substrate. Upon formation of a uniformly thin amorphous intermixed alloy layer at the metal/silicon interface, the excess (unreacted) metal is removed. The device is annealed to facilitate the formation of a thin silicide layer on the substrate surface which exhibits uniform thickness at the bottoms of both wide and narrow contact trenches.
摘要:
Disclosed is a semiconductor device having a p-n junction with reduced junction leakage in the presence of metal silicide defects that extend to the junction and a method of forming the device. Specifically, a semiconductor layer having a p-n junction is formed. A metal silicide layer is formed on the semiconductor layer and a dopant is implanted into the metal silicide layer. An anneal process is performed causing the dopant to migrate toward the metal silicide-semiconductor layer interface such that the peak concentration of the dopant will be within a portion of the metal silicide layer bordering the metal silicide-semiconductor layer interface and encompassing the defects. As a result, the silicide to silicon contact is effectively engineered to increase the Schottky barrier height at the defect, which in turn drastically reduces any leakage that would otherwise occur, when the p-n junction is in reverse polarity.
摘要:
A multigate structure which comprises a semiconductor substrate; an ultra-thin silicon or carbon bodies of less than 20 nanometers thick located on the substrate; an electrolessly deposited metallic layer selectively located on the side surfaces and top surfaces of the ultra-thin silicon or carbon bodies and selectively located on top of the multigate structures to make electrical contact with the ultra-thin silicon or carbon bodies and to minimize parasitic resistance, and wherein the ultra-thin silicon or carbon bodies and metallic layer located thereon form source and drain regions is provided along with a process to fabricate the structure.
摘要:
A fabrication method for a semiconductor device structure is provided. The device structure has a layer of silicon and a layer of silicon dioxide overlying the layer of silicon, and the method begins by forming an isolation recess by removing a portion of the silicon dioxide and a portion of the silicon. The isolation recess is filled with stress-inducing silicon nitride and, thereafter, the silicon dioxide is removed such that the stress-inducing silicon nitride protrudes above the silicon. Next, the exposed silicon is thermally oxidized to form silicon dioxide hardmask material overlying the silicon. Thereafter, a first portion of the silicon dioxide hardmask material is removed to reveal an accessible surface of the silicon, while leaving a second portion of the silicon dioxide hardmask material intact. Next, silicon germanium is epitaxially grown from the accessible surface of the silicon.
摘要:
A multigate structure which comprises a semiconductor substrate; an ultra-thin silicon or carbon bodies of less than 20 nanometers thick located on the substrate; an electrolessly deposited metallic layer selectively located on the side surfaces and top surfaces of the ultra-thin silicon or carbon bodies and selectively located on top of the multigate structures to make electrical contact with the ultra-thin silicon or carbon bodies and to minimize parasitic resistance, and wherein the ultra-thin silicon or carbon bodies and metallic layer located thereon form source and drain regions is provided along with a process to fabricate the structure.
摘要:
A double-effective vaccine vector against foot-and-mouth disease virus having a bicistronic expression vector sequence, the bicistronic expression vector sequence is an antisense gene sequence capable of conjugating with 5′ UTR of RNA of the foot-and-mouth disease virus genome and an intact sequence of VP1 structural protein gene of the foot-and-mouth disease virus. Animal experiments show that the vaccine vector provides double effects in terms of gene therapy and gene immunization for the prevention and treatment of foot-and-mouth disease in animals. Also provided are construction methods and methods of use of the vaccine vector.