Abstract:
A method for forming a fin in a semiconductor device that includes a substrate, an insulating layer formed on the substrate, and a conductive layer formed on the insulating layer, includes forming a carbon layer over the conductive layer and forming a mask over the carbon layer. The method further includes etching the mask and carbon layer to form at least one structure, where the structure has a first width, reducing the width of the carbon layer in the at least one structure to a second width, depositing an oxide layer to surround the at least one structure, removing a portion of the oxide layer and the mask, removing the carbon layer to form an opening in a remaining portion of the oxide layer for each of the at least one structure, filling the at least one opening with conductive material, and removing the remaining portion of the oxide layer and a portion of the conductive layer to form the fin.
Abstract:
A MOSFET and method of fabrication. The MOSFET includes a metal containing source and a metal containing drain; a semiconductor body having a thickness of less than about 15 nm disposed between the source and the drain and on top of an insulating layer, the insulating layer formed on a substrate; a gate electrode disposed over the body and defining a channel interposed between the source and the drain; and a gate dielectric made from a high-K material and separating the gate electrode and the body.
Abstract:
A method and device for improving the channel doping profile of deep-submicron field effect transistors and MOSFETs. The method involves forming a multi-graded lateral channel doping profile by dual halo implants annealed at different temperatures to improve the threshold voltage roll-off characteristics of MOSFETs of 50 nm or less. The method includes forming a spacer on the sidewalls of a gate, followed by forming source/drain regions by epitaxial growth followed by a deep source/drain implant and anneal. After removal of the spacer, the first angled deep halo implant through the space formed by removal of the spacer and a second annealing at a temperature lower than the first anneal occurs. A second angled halo implant and a third anneal at a temperature less than the second anneal is performed. The microelectronic chip is then silicided and the MOSFET is further completed.
Abstract:
A method of manufacturing an integrated circuit may include the steps of forming a deep amorphous region and doping the deep amorphous region. The doping of the deep amorphous region can form source and drain regions with extensions. After doping, the substrate is annealed. The annealing can occur at a low temperature.
Abstract:
A method of fabricating an integrated circuit forming abrupt source/drain junctions. The process can be utilized for P-channel or N-channel metal oxide field semiconductor effect transistors (MOSFETs) on a silicon-on-insulator (SOI) substrate. The source extension is more conductive than the drain extension. The transistor has reduced short channel effects and strong drive current and yet is reliable.
Abstract:
A MOSFET transistor and method of fabrication are described for engineering the channel dopant profile within a MOSFET transistor utilizing a single deep implantation step and solid-phase epitaxy. The method utilizes the formation of an L-shaped spacer having reduced height “cutouts” adjacent to the gate stack. The L-shaped spacer is preferably created by depositing two layers of insulating material, over which a third spacer is formed as a mask for removing unwanted portions of the first and second insulation layers. Amorphization and deep implantation is performed through the L-shaped spacer, wherein the junction contour is profiled in response to the geometry of the L-shaped spacer, such that a single deep implantation step may be utilized. Pocketed steps within the contoured junction reduce short-channel effects while allowing the formation of silicide to a depth which exceeds the junction depth implanted beneath the gate electrode.
Abstract:
A method of manufacturing a vertical transistor. The vertical transistor utilizes a deposited amorphous silicon layer to form a source region. The vertical gate transistor includes a double gate structure for providing increased drive current. A wafer bonding technique can be utilized to form the substrate.
Abstract:
A semiconductor-on-insulator (SOI) device. The SOI device includes a substrate having a buried oxide layer disposed thereon and an active layer disposed on the buried oxide layer, the active layer having an active region defined by isolation regions, the active region having a source and a drain with a body disposed therebetween, each of the source and the drain having a selectively grown silicon-germanium region disposed under an upper layer of selectively grown silicon, the silicon-germanium regions forming heterojunction portions respectively along the source/body junction and the drain/body junction. A method of fabricating the SOI device is also disclosed.
Abstract:
A method of fabricating a semiconductor device, having a MOSFET with an amorphous-silicon-germanium gate electrode and an elevated crystalline silicon-germanium source/drain structure for preventing adverse reaction with an underlying silicon substrate, and a device thereby formed. The gate electrode and the raised S/D structure are simultaneously formed by depositing and polishing an amorphous-silicon-germanium film and subsequently heating the polished an amorphous-silicon-germanium film in a low temperature range. Generally, the method involves: (1) depositing an amorphous-silicon-germanium layer; (2) simultaneously forming a raised source/drain structure and a gate electrode by polishing the amorphous-silicon-germanium layer; and (3) annealing the raised source/drain structure and a gate electrode.
Abstract:
A method for making a ULSI MOSFET chip includes forming transistor gates on a substrate and a semiconductor device thereby made. The gates are formed by depositing a polysilicon layer on the substrate, implanting germanium into the polysilicon layer at a comparatively low dose, and then oxidizing the doped polysilicon layer. Under the influence of the oxidation, the germanium is repelled from an upper sacrificial region of the polysilicon layer into a lower gate region of the polysilicon layer, thereby increasing the germanium concentration in the lower gate region. The sacrificial region is then etched away and an undoped polysilicon film deposited on the gate region. Subsequently, the gate region with undoped polysilicon film is patterned to establish a MOSFET gate, with the substrate then being appropriately processed to establish MOSFET source/drain regions.