摘要:
The present invention discloses a high voltage device which includes: a substrate having a first isolation structure to define a device region; a source and a drain in the device region; a gate on the substrate and between the source and the drain; and a second isolation structure including: a first isolation region on the substrate and between the source and the drain, wherein from top view, the first isolation region is partially or totally covered by the gate; and a second isolation region in the substrate and below the gate, wherein the second isolation region has a depth in the substrate which is deeper than the depth of the first isolation region in the substrate, and the length of the second isolation region in a direction along an imaginary line connecting the source and the drain does not exceed one-third length of the first isolation region.
摘要:
The present invention discloses a high voltage multigate device and a manufacturing method thereof. The high voltage multigate device includes: a semiconductor fin doped with first conductive type impurities; a dielectric layer, which overlays a portion of the semiconductor fin; a gate which overlays the dielectric layer; a drain doped with second conductive type impurities, which is formed in the semiconductor fin or coupled to the semiconductor fin; a source doped with second conductive type impurities, which is formed in the semiconductor fin or coupled to the semiconductor fin, wherein the drain and the source are located at different sides of the gate; and a drift region or a well doped with second conductive type impurities, which is formed in the semiconductor fin at least between the drain and the gate.
摘要:
The present invention discloses an electrostatic discharge protection device and a manufacturing method thereof. The electrostatic discharge protection device includes: a substrate, a gate, two N type lightly doped drains, an N type source, an N type drain, and two N type doped regions extending downward beneath and in contact with the source and drain respectively, such that when the source and drain are conducted with each other, at least part of the current flows through the two downwardly extending doped regions to increase the electrostatic discharge protection voltage of the electrostatic discharge protection device.
摘要:
The present invention discloses a method of manufacturing MOS device having a lightly doped drain (LDD) structure. The method includes: providing a first conductive type substrate; forming an isolation region in the substrate to define a device area; forming a gate structure in the device area, the gate structure having a dielectric layer, a stack layer, and a spacer layer on the sidewalls of the stack layer; implanting second conductive type impurities into the substrate with a tilt angle to form an LDD structure, wherein at least some of the impurities are implanted into the substrate through the spacer to form part of the LDD structure below the spacer layer; and implanting second conductive type impurities into the substrate to form source and drain.
摘要:
A semiconductor device with high breakdown voltage and low on-resistance is provided. An embodiment comprises a substrate having a buried layer in a portion of the top region of the substrate in order to extend the drift region. A layer is formed over the buried layer and the substrate, and high-voltage N-well and P-well regions are formed adjacent to each other. Field dielectrics are located over portions of the high-voltage N-wells and P-wells, and a gate dielectric and a gate conductor are formed over the channel region between the high-voltage P-well and the high-voltage N-well. Source and drain regions for the transistor are located in the high-voltage P-well and high-voltage N-well. Optionally, a P field ring is formed in the N-well region under the field dielectric. In another embodiment, a lateral power superjunction MOSFET with partition regions located in the high-voltage N-well is manufactured with an extended drift region.
摘要:
A method of fabricating a semiconductor device includes forming in the substrate a well region comprising a first type of dopant; forming in the well region a base region comprising a second type of dopant different from the first type of dopant; and forming in the substrate source and drain regions comprising the first type of dopant. The method further includes forming on the substrate a gate electrode interposed laterally between the source and drain regions; and forming on the substrate a gate spacer disposed laterally between the source region and the gate electrode adjacent a side of the gate electrode and having a conductive feature embedded therein. The well region surrounds the drain region and the base region, and the base region is disposed partially underlying the gate electrode surrounding the source region defining a channel under the gate electrode of having a length substantially less than half the length of the gate electrode.
摘要:
A semiconductor structure includes a semiconductor substrate of a first conductivity type; a pre-high-voltage well (pre-HVW) in the semiconductor substrate, wherein the pre-HVW is of a second conductivity type opposite the first conductivity type; a high-voltage well (HVW) over the pre-HVW, wherein the HVW is of the second conductivity type; a field ring of the first conductivity type occupying a top portion of the HVW, wherein at least one of the pre-HVW, the HVW, and the field ring comprises at least two tunnels; an insulation region over the field ring and a portion of the HVW; a drain region in the HVW and adjacent the insulation region; a gate electrode over a portion the insulation region; and a source region on an opposite side of the gate electrode than the drain region.
摘要:
A semiconductor device with high breakdown voltage and low on-resistance is provided. An embodiment comprises a substrate having a buried layer in a portion of the top region of the substrate in order to extend the drift region. A layer is formed over the buried layer and the substrate, and high-voltage N-well and P-well regions are formed adjacent to each other. Field dielectrics are located over portions of the high-voltage N-wells and P-wells, and a gate dielectric and a gate conductor are formed over the channel region between the high-voltage P-well and the high-voltage N-well. Source and drain regions for the transistor are located in the high-voltage P-well and high-voltage N-well. Optionally, a P field ring is formed in the N-well region under the field dielectric. In another embodiment, a lateral power superjunction MOSFET with partition regions located in the high-voltage N-well is manufactured with an extended drift region.
摘要:
A semiconductor device with high breakdown voltage and low on-resistance is provided. An embodiment comprises a substrate having a buried layer in a portion of the top region of the substrate in order to extend the drift region. A layer is formed over the buried layer and the substrate, and high-voltage N-well and P-well regions are formed adjacent to each other. Field dielectrics are located over portions of the high-voltage N-wells and P-wells, and a gate dielectric and a gate conductor are formed over the channel region between the high-voltage P-well and the high-voltage N-well. Source and drain regions for the transistor are located in the high-voltage P-well and high-voltage N-well. Optionally, a P field ring is formed in the N-well region under the field dielectric. In another embodiment, a lateral power superjunction MOSFET with partition regions located in the high-voltage N-well is manufactured with an extended drift region.
摘要:
A semiconductor structure includes a semiconductor substrate of a first conductivity type; a pre-high-voltage well (pre-HVW) in the semiconductor substrate, wherein the pre-HVW is of a second conductivity type opposite the first conductivity type; a high-voltage well (HVW) over the pre-HVW, wherein the HVW is of the second conductivity type; a field ring in the HVW and occupying a top portion of the HVW, wherein the field ring is of the first conductivity type; an insulation region over and in contact with the field ring and a portion of the HVW; a gate electrode partially over the insulation region; a drain region in the HVW, wherein the drain region is of the second conductivity type; and wherein the HVW horizontally extends further toward the drain region than the pre-HVW; and a source region adjacent to, and on an opposite side of the gate electrode than the drain region.