摘要:
The present invention discloses a method for manufacturing a semiconductor device, comprising the steps of: forming a gate stack structure on a substrate; forming source and drain regions as well as a gate spacer on both sides of the gate stack structure; depositing a first metal layer on the source and drain regions; performing a first annealing such that the first metal layer reacts with the source and drain regions, to epitaxially grow a first metal silicide; depositing a second metal layer on the first metal silicide; and performing a second annealing such that the second metal layer reacts with the first metal silicide as well as the source and drain regions, to form a second metal silicide. In accordance with the method for manufacturing a semiconductor device of the present invention, by means of epitaxially growing an ultra-thin metal silicide on the source and drain regions, the grain boundaries among silicide particles are minimized or eliminated, the metal diffusion speed and direction are limited, thus the lateral growth of the metal silicide is suppressed and the device performance is further increased.
摘要:
The invention provides a method for improving uniformity of chemical-mechanical planarization process, comprising the steps of: forming features on a substrate; forming a first dielectric isolation layer between the features; planarizing the first dielectric isolation layer until the features are exposed, causing the first dielectric isolation layer between the features to have a recess depth; forming a second dielectric isolation layer on the features and the first dielectric isolation layer, whereby reducing the difference in height between the second dielectric isolation layer between the features and the second dielectric isolation layer on the top of the features; planarizing the second dielectric isolation layer until the features are exposed. According to the method for improving uniformity of chemical-mechanical planarization process of the invention, a dielectric isolation layer is formed again after grinding the dielectric isolation layer on the top of the features, such that the difference in height between the dielectric layer between the features and the dielectric layer on the top of the features is effectively reduced, and the recess of the features is compensated, the within-in-die uniformity is effectively improved.
摘要:
A method for eliminating contact bridge in a contact hole process is disclosed, wherein a cleaning menu comprising a multi-step adaptive protective thin film deposition process is provided, so that a stack adaptive protective thin film is formed on the sidewall of the chamber of the HDP CVD equipment. The stack adaptive protective thin film has good adhesivity, compactness and uniformity to protect the sidewall of the chamber of the HDP CVD equipment from being damaged by the plasma, and avoid the generation of defect particles, thereby improving the HDP CVD technical yield and eliminating the contact bridge phenomenon in the contact hole process.
摘要:
A through-silicon via and a method for forming the same are provided. The method includes: providing a semiconductor substrate, the semiconductor substrate including an upper surface and an opposite lower surface; etching the upper surface of the semiconductor substrate to form an opening; filling the opening with a conductive material to form a first nail; etching the lower surface of the semiconductor substrate to form a recess, such that the first nail is exposed at a bottom of the recess; filling the recess with a conductive material that can be etched, and etching the conductive material that can be etched to form a second nail, such that the second nail is vertically connected with the first nail; and filling a gap between the second nail and the semiconductor substrate and a gap between the second nail and an adjacent second nail with a dielectric layer. Then invention can improve the reliability of through-silicon vias and avoid voids.
摘要:
The invention provides a MOS transistor and a method for forming the MOS transistor. The MOS transistor includes a semiconductor substrate; a gate stack on the semiconductor substrate, and including a gate dielectric layer and a gate electrode on the semiconductor substrate in sequence; a source region and a drain region, respectively at sidewalls of the gate stack sidewalls of the gate stack and in the semiconductor; sacrificial metal spacers on sidewalls of the gate stack sidewalls of the gate stack, and having tensile stress or compressive stress. This invention scales down the equivalent oxide thickness, improves uniformity of device performance, raises carrier mobility and promotes device performance.
摘要:
The present invention provides a method of manufacturing a dummy gate in a gate last process, which comprises the steps of forming a dummy gate material layer and a hard mask material layer sequentially on a substrate; etching the hard mask material layer to form a top-wide-bottom-narrow hard mask pattern; dry etching the dummy gate material layer using the hard mask pattern as a mask to form a top-wide-bottom-narrow dummy gate. According to the dummy gate manufacturing method of the present invention, instead of vertical dummy gates used conventionally, top-wide-bottom-narrow trapezoidal dummy gates are formed, and after removing the dummy gates, trapezoidal trenches can be formed. It facilitates the subsequent filling of the high-k or metal gate material and enlarges the window for the filling process; as a result, the device reliability will be improved.
摘要:
A semiconductor device, a formation method thereof, and a package structure are provided. The semiconductor device comprises: a semiconductor substrate in which a metal-oxide-semiconductor field-effect transistor (MOSFET) is formed; a dielectric layer, provided on the semiconductor substrate and covering the MOSFET, wherein a plurality of interconnection structures are formed in the dielectric layer; and at least one heat dissipation path, embedded in the dielectric layer between the interconnection structures, for liquid or gas to circulate in the heat dissipation path, wherein openings of the heat dissipation path are exposed on the surface of the dielectric layer. The present invention can improve heat dissipation efficiency, and prevent chips from overheating.
摘要:
The invention discloses a novel MOSFET device and its implementation method, the device comprising: a substrate; a gate stack structure, on either side of which is eliminated a conventional isolation spacer; source/drain regions located in the substrate on opposite sides of the gate stack structure; epitaxially grown metal silicide located on the source/drain regions; characterized in that, the epitaxially grown metal silicide is in direct contact with a channel region controlled by the gate stack structure, thereby eliminating the high resistance region below the conventional isolation spacer. At the same time, the epitaxially grown metal silicide can withstand a second high-temperature annealing used for improving the performance of a high-k gate dielectric material, which further improves the performance of the device. The MOSFET according to the invention reduces the parasitic resistance and capacitance greatly and thereby decreases the RC delay, thus improving the switching performance of the MOSFET device significantly.
摘要:
A chemical-mechanical polishing tool and a method for preheating the same are disclosed. The chemical-mechanical polishing tool includes: a polishing pad, a deionized water supply channel, a polishing slurry supply channel and a polishing pad conditioner; and the chemical-mechanical polishing tool further includes: a heating apparatus, adapted to heat DI water fed to the DI water supply channel; a temperature sensor, arranged close to the polishing pad to measure a temperature of the polishing pad; and a preheating control system, connected to the temperature sensor, and adapted to control the DI water supply channel to spray the heated DI water to the polishing pad, and when the temperature measured by the temperature sensor is equal to or higher than a predetermined temperature, to close the DI water supply channel, control the polishing slurry supply channel to spray polishing slurry to the polishing pad, and startup the polishing pad conditioner to dress the polishing pad. The invention can reduce the consumption of polishing consumables by the chemical-mechanical polishing tool during preheating, thereby reducing production cost.
摘要:
A through-silicon via and a method for forming the same are provided. The method includes: providing a semiconductor substrate, the semiconductor substrate including an upper surface and an opposite lower surface; etching the upper surface of the semiconductor substrate to form an opening; filling the opening with a conductive material to form a first nail; etching the lower surface of the semiconductor substrate to form a recess, such that the first nail is exposed at a bottom of the recess; filling the recess with a conductive material that can be etched, and etching the conductive material that can be etched to form a second nail, such that the second nail is vertically connected with the first nail; and filling a gap between the second nail and the semiconductor substrate and a gap between the second nail and an adjacent second nail with a dielectric layer. Then invention can improve the reliability of through-silicon vias and avoid voids.