Abstract:
A system for managing inventory of components in a room. The system includes an identification device configured to communicate identification information relating to an associated component, a reader device configured to substantially autonomously receive the identification information from the identification device, and means for identifying the locations of the identification devices. The system also includes a controller configured to communicate with the reader device and compile the identification information received from the reader device and the locations of the identification devices to maintain an inventory of the components.
Abstract:
Systems and methods of analyzing energy consumption using node similarity are disclosed. An example of a method may be carried out by program code stored on non-transient computer-readable medium and executed by a processor. The method includes assigning a similarity score to a plurality of nodes using at least one of: domain based rules, attribute based similarity metrics, and machine learning. The method also includes identifying a similar node from the plurality of nodes, for a node under consideration, based on the similarity score. The method also includes determining energy consumption of the node under consideration based on energy consumption of the similar node.
Abstract:
Systems and methods of disaggregating power load are provided. An example of a method is carried out by program code stored on non-transient computer-readable medium and executed by a processor. The method includes receiving time series data representing total energy consumption. The method also includes identifying distinguishing features in the time series data. The method also includes identifying energy consumption constituents of the total energy consumption based on the features.
Abstract:
Systems and methods of analyzing energy consumption using node similarity are disclosed. An example of a method may be carried out by program code stored on non-transient computer-readable medium and executed by a processor. The method includes assigning a similarity score to a plurality of nodes using at least one of: domain based rules, attribute based similarity metrics, and machine learning. The method also includes identifying a similar node from the plurality of nodes, for a node under consideration, based on the similarity score. The method also includes determining energy consumption of the node under consideration based on energy consumption of the similar node.
Abstract:
In a method of generating governing metrics, a high-level goal to be met in a provisioned system is identified. In addition, a low-level governing policy designed to facilitate achievement of the high-level goal is selected and properties relating to the selected low-level governing policy are identified. The identified properties are formulated to define governing metrics relevant to the selected low-level governing policy and the formulated governing metrics are outputted. The formulated governing metrics are configured to be used in at least one of evaluating and controlling resource provisioning in the provisioned system.
Abstract:
In a method of designing an apparatus formed of at least one component to substantially minimize exergy destruction, at least one of one or more candidate materials and one or more candidate processes are identified. The one or more candidate materials are capable of being used in forming the at least one component and the one or more candidate processes are associated with either or both of the one or more candidate materials and the at least one component. Exergy destruction values of at least one of the one or more candidate materials and the one or more candidate processes are determined. In addition, at least one of the one or more candidate materials and the one or more candidate processes having the substantially lowest exergy destruction values are selected for the apparatus design.
Abstract:
A data center is designed by determining a compute description that describes computer resources to be used in the system from design requirements and models of the computer resources. A facility description that describes facilities to be used in the data center is determined from the compute description and models of the facilities. An integrated system describing the design of the data center is determined from the facility and compute descriptions.
Abstract:
A device for sensing at least one environmental condition in a data center. The device includes a chassis, a propelling mechanism, a power supply, a steering mechanism, and a controller supported on the chassis. The chassis also supports at least one environmental condition sensor and is operable to travel through the data center and sense at least one environmental condition at various locations throughout the data center.
Abstract:
A refrigeration system for controlling airflow around an air-cooled heat generating device having a plurality of components includes a refrigerant line split into second refrigerant lines, which are arranged in a parallel configuration with respect to each other. Evaporators are positioned along the second refrigerant lines and in the path of airflow supplied into the components or airflow exhausted from the components. The refrigeration system further includes a variable speed compressor and a controller for controlling the speed of the variable speed compressor. Furthermore, the refrigeration system includes a temperature sensor configured to transmit signals related to a detected temperature to the controller, and the controller is configured to vary the speed of the variable speed compressor based upon the detected temperature.
Abstract:
A method for controlling cooling provisioning for heat generating devices includes correlating the heat generating devices with primary actuators, such that the heat generating devices are associated with primary actuators having at least a predefined level of influence over the respective heat generating devices. The flow rates of air supplied by the primary actuators are set based upon volume flow rate requirements of the heat generating devices, such that the volume flow rate setting for a primary actuator is based upon the volume flow rate requirement for the heat generating devices associated with the primary actuator. In addition, the temperatures of the airflow supplied by the primary actuators are varied to substantially maintain associated heat generating devices within predetermined temperature ranges.