摘要:
A semiconductor-on-insulator (SOI) device. The SOI device includes an SOI wafer including an active layer, a substrate and a buried insulation layer disposed therebetween. The buried insulation layer includes an oxide trap region disposed along an upper surface of the buried insulation layer, the oxide trap region having a plurality of oxide traps to promote carrier recombination.
摘要:
Accurate determination of gate dielectric thickness is required to produce high-reliability and high-performance ultra-thin gate dielectric semiconductor devices. Large area gate dielectric capacitors with ultra-thin gate dielectric layers suffer from high gate leakage, which prevents the accurate measurement of gate dielectric thickness. Accurate measurement of gate dielectric thickness of smaller area gate dielectric capacitors is hindered by the relatively large parasitic capacitance of the smaller area capacitors. The formation of first and second dummy structures on a wafer allow the accurate determination of gate dielectric thickness. First and second dummy structures are formed that are substantially similar to the gate dielectric capacitors except that the first dummy structures are formed without the second electrode of the capacitor and the second dummy structures are formed without the first electrode of the capacitor structure. The capacitance, and therefore thickness, of the gate dielectric capacitor is determined by subtracting the parasitic capacitances measured at the first and second dummy structures.
摘要:
Gate oxide surface irregularities, such as surface roughness, are reduced by treatment with an oxygen-containing plasma. Embodiments include forming a gate oxide layer and then treating the formed gate oxide layer with an oxygen plasma to repair weak spots and fill in pin holes and surface irregularities, thereby reducing gate/gate oxide interface roughness.
摘要:
The present invention relates to a method for fabricating MOS transistors with reduced parasitic capacitance. The present invention is based upon recognition that the parasitic capacitance of MOS transistors, such as are utilized in the manufacture of CMOS and IC devices, can be reduced by use of sidewall spacers having an optimized cross-sectional shape, in conjunction with an overlying insulator layer comprised of a low-k dielectric material.
摘要:
A method for forming a multi-layered substrate. The method includes forming a compliant layer on a face of a first substrate (10). Joining the compliant layer against a face of a second substrate (20), where the compliant layer forms around a surface non-uniformity on the second substrate face.
摘要:
An ion implantation apparatus and method. The apparatus has a vacuum chamber and an ion beam generator to generate an ion beam in the vacuum chamber. The apparatus also has an implant wheel (10), in the vacuum chamber, having a plurality of circumferentially distributed substrate holding positions. Each of the substrate holding positions comprises a substrate holder (17), which includes an elastomer overlying the substrate holder (17) and a thermal insulating material (71) (e.g., quartz, silicon, ceramics, and other substantially non-compliant materials) overlying the elastomer (72). The present thermal insulating material increases a temperature of a substrate as it is implanted.
摘要:
A transistor device formed on a semiconductor-on-insulator (SOI) substrate with a buried oxide (BOX) layer disposed thereon and an active layer disposed on the BOX layer having active regions defined by isolation trenches. The device includes a gate defining a channel interposed between a source and a drain formed within the active region of the SOI substrate. Further, the device includes a multi-thickness silicide layer formed on the main source and drain regions and source and drain extension regions wherein a portion of the multi-thickness silicide layer which is formed on the source and drain extension regions is thinner than a portion of the silicide layer which is formed on the main source and drain regions. The device further includes a second thin silicide layer formed on a polysilicon electrode of the gate.