Abstract:
The present invention relates to a fan-forced positive pressure breathing apparatus commonly known as a Powered Air Purifying Respirators (PAPR) system, and specifically concerns the connecting of the breathing components of such equipment. The invention is a method and apparatus for rapid engagement of PAPR breathing components (such as air supply lines and filter elements to a blower housing). The invention also provides for indicating and/or monitoring whether the relative components have been aligned and coupled in sealed engagement.
Abstract:
Methods are provided for quenching undesired side reactions of pathogen inactivating compounds in biological materials. In a particular embodiment, methods are provided for quenching undesired side reactions of a pathogen inactivating compound that includes a functional group which is, or which is capable of forming, an electrophilic group. In this embodiment, the material is treated with the pathogen inactivating compound and a quencher, wherein the quencher comprises a nucleophilic functional group that is capable of covalently reacting with the electrophilic group. The electrophilic group on the pathogen inactivating compound is preferably a non-radical cationic group. In one embodiment, the pathogen inactivating compound includes a nucleic acid binding ligand and a mustard group, wherein the mustard group is capable of reacting in situ to form the electrophilic group. Preferred quenchers are thiols, such as glutathione. Biological materials which may be treated include whole blood, red blood cells, blood plasma, and platelets. The methods permit inhibition of the modification of red blood cells in red blood cell containing materials during pathogen inactivation.
Abstract:
Methods and compositions for treating pathogens in material are described, including methods of decontaminating human fluids prior to processing in the clinical laboratory and methods for decontaminating blood products prior to in vivo use. The techniques handle large volumes of human serum without impairing the testing results. Novel compounds for photodecontaminating biological material are also contemplated which are compatible with clinical testing, in that they do not interfere with serum analytes.
Abstract:
Compounds and methods for inactivating pathogens in materials are described, including compositions and methods for inactivating pathogens in biological materials such as red blood cell preparations and plasma. The compounds and methods may be used to treat materials intended for in vitro or in vivo use, such as clinical testing or transfusion. The compounds are designed to specifically bind to and react with nucleic acid, and then to degrade to form breakdown products. The degradation reaction is preferably slower than the reaction with nucleic acid.
Abstract:
An apparatus and method for fracking optimization, wherein the apparatus includes at least a processor, and a memory, wherein the memory containing instructions configuring the at least a processor to receive a reservoir datum from at least a sensing device, generate a production training data include a plurality of reservoir datums as input correlated to a plurality of optimal production parameters as output, train a fracking optimization machine-learning model using the production training data, determine an optimal production parameter as a function of the fracking optimization machine-learning model, and generating an optimal production plan as a function of the optimal production parameter.
Abstract:
An apparatus and method for generating a compiled artificial intelligence (AI) model. The apparatus incudes a processor that is configured to receive data sets from user devices. The processor is further configured to convert the data sets using a machine-learning model into a cleansed data format and generate an accumulated model using the converted data sets as training data.
Abstract:
An apparatus for multi-stage fracking, wherein the apparatus includes a pump configured to pump a fracking fluid into a rock region comprises a plurality of rock zones, and a computing device communicatively connected to the pump, wherein the computing device includes at least a processor, and a memory communicatively connected to the at least a processor containing instructions configuring the at least a processor to receive reservoir data, determine an optimal fracking stimulation parameter as a function of the reservoir data, identify a fracking stage as a function of the optimal fracking stimulation parameter, and adjust a pump configuration of the pump as a function of the fracking stage.
Abstract:
An apparatus and method for generating a compiled artificial intelligence (AI) model. The apparatus incudes a processor that is configured to receive data sets from user devices. The processor is further configured to convert the data sets using a machine-learning model into a cleansed data format and generate an accumulated model using the converted data sets as training data.
Abstract:
An enclosure for containing cylinders includes an upper surface, a lower surface, opposing side walls spanning the upper and lower surfaces, and an end surface spanning the upper and lower surfaces, the upper surface, lower surface, side walls, and end surface defining an enclosed space. A plurality of inner walls divides the enclosed space to define bays. A removable door panel is opposite the end surface and includes dividers defining portions of the door panel corresponding to the bays. The enclosure includes a plurality of first contact pads, a plurality of first mounting plates, a plurality of second contact pads, and a plurality of second mounting plates. At least one first contact pad and at least one second contact pad is positioned in a corner of each bay and each portion, respectively, at an angle that is neither parallel or perpendicular to either the side walls or the upper surface.
Abstract:
An enclosure for containing cylinders includes an upper surface, a lower surface, opposing side walls spanning the upper and lower surfaces, and an end surface spanning the upper and lower surfaces, the upper surface, lower surface, side walls, and end surface defining an enclosed space. A plurality of inner walls divides the enclosed space to define bays. A removable door panel is opposite the end surface and includes dividers defining portions of the door panel corresponding to the bays. The enclosure includes a plurality of first contact pads, a plurality of first mounting plates, a plurality of second contact pads, and a plurality of second mounting plates. At least one first contact pad and at least one second contact pad is positioned in a corner of each bay and each portion, respectively, at an angle that is neither parallel or perpendicular to either the side walls or the upper surface.