摘要:
A method and system for providing a magnetic element are disclosed. The method and system include providing a magnetic biasing structure having a first pinned layer, a second pinned layer, a spacer layer, and a free layer. The first pinned layer has a first magnetization pinned in a first direction. The second pinned layer has a second magnetization in a second direction that is substantially perpendicular or along the first direction. The spacer layer is nonferromagnetic, resides between the second pinned layer and the free layer, and is configured such that the free layer is substantially free of exchange coupling with the second pinned layer. The free layer has a shape anisotropy with a longitudinal direction substantially in the second direction. The magnetic biasing structure provides a bias field for the free layer along the hard or easy axis. In one aspect, the second pinned layer resides between the first pinned layer and the free layer.
摘要:
A method and system provide a magnetic junction usable in a magnetic device and which resides on a substrate. The magnetic junction includes a reference layer, a nonmagnetic spacer layer, and a free layer. The nonmagnetic spacer layer is between the reference layer and the free layer. The free layer, the nonmagnetic spacer layer and the reference layer form nonzero angle(s) with the substrate. The magnetic junction is configured such that the free layer is switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction.
摘要:
A method and system provide a magnetic junction usable in a magnetic device. The magnetic junction includes a pinned layer, a nonmagnetic spacer layer, and a free layer. The nonmagnetic spacer layer is between the pinned layer and the free layer. The magnetic junction is configured such that the free layer is switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction. At least one of the free layer and the pinned layer include at least one half-metal.
摘要:
A method and system provide a magnetic junction usable in a magnetic device. The magnetic junction includes a reference layer, a nonmagnetic spacer layer, and a free layer. The nonmagnetic spacer layer is between the reference layer and the free layer. The free layer has an engineered perpendicular magnetic anisotropy. The engineered PMA includes at least one of an insulating insertion layer induced PMA, a stress induced PMA, PMA due to interface symmetry breaking, and a lattice mismatch induced PMA. The magnetic junction is configured such that the free layer is switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction.
摘要:
A method and system provide a magnetic junction usable in a magnetic device. The magnetic junction includes a pinned layer, a nonmagnetic spacer layer, a free layer, at least one insulating layer, and at least one magnetic insertion layer adjoining the at least one insulating layer. The nonmagnetic spacer layer is between the pinned layer and the free layer. The at least one insulating layer is adjacent to at least one of the free layer and the pinned layer. The at least one magnetic insertion layer adjoins the at least one insulating layer. In some aspects, the insulating layer(s) include at least one of magnesium oxide, aluminum oxide, tantalum oxide, ruthenium oxide, titanium oxide, and nickel oxide The magnetic junction is configured such that the free layer is switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction.
摘要:
A material composition for forming a free layer in a STT structure (such as a single or dual MTJ structure) can include CoxFeyMz, where M is a non-magnetic material that assists in forming a good crystalline orientation and matching between the free layer and an MgO interface. The material M preferably either does not segregate to the MgO interface or, if it does segregate to the MgO interface, it does not significantly reduce the PMA of the free layer. The free layer can further include a connecting layer, where M is attracted to the insertion layer during annealing. The free layer can include a graded composition of CoxFeyMz, where z changes within the free layer.
摘要:
A method and system for providing a magnetic junction usable in a magnetic memory are described. The magnetic junction includes first and second pinned layers, first and second nonmagnetic spacer layers, and a free layer. The first pinned layer has a first pinned layer magnetic moment and is nonmagnetic layer-free. The first nonmagnetic spacer layer resides between the first pinned and free layers. The free layer resides between the first and second nonmagnetic spacer layers. The second pinned layer has a second pinned layer magnetic moment and is nonmagnetic layer-free. The second nonmagnetic spacer layer resides between the free and second pinned layers. The first and second pinned layer magnetic moments are antiferromagnetically coupled and self-pinned. The magnetic junction is configured to allow the free layer to be switched between stable magnetic states when a write current is passed through the magnetic junction.
摘要:
A method and system for providing a magnetic junction usable in a magnetic device are described. The magnetic junction includes a pinned layer, a nonmagnetic spacer layer, and a free layer. The nonmagnetic spacer layer is between the pinned layer and the free layer. The free layer has a magnetic anisotropy, at least a portion of which is a biaxial anisotropy. The magnetic junction is configured such that the free layer is switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction.
摘要:
A method and system provide a magnetic junction usable in a magnetic device. The magnetic junction includes a pinned layer, a nonmagnetic spacer layer, and a free layer. The nonmagnetic spacer layer is between the pinned layer and the free layer. The magnetic junction is configured such that the free layer is switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction. At least one of the free layer and the pinned layer include at least one half-metal.
摘要:
A logic device is described. The logic device includes magnetic input/channel regions, magnetic sensor region(s), and sensor(s) coupled with the magnetic sensor region(s). Each magnetic input/channel region is magnetically biased in a first direction. The magnetic sensor region(s) are magnetically biased in a second direction different from the first direction such that domain wall(s) reside in the magnetic input/channel regions if the logic device is in a quiescent state. The sensor(s) output a signal based on a magnetic state of the magnetic sensor region(s). The input/channel regions and the magnetic sensor region(s) are configured such that the domain wall(s) may move into the magnetic sensor region(s) in response to a logic signal being provided to the magnetic input region(s). The magnetic input/channel region(s) include FexCoyNizM1q1M2q2, with x+y+z+q1+q2=1, x, y, z, q1, q2 at least zero and M1 and M2 being nonmagnetic.
摘要翻译:描述逻辑设备。 逻辑器件包括磁性输入/沟道区域,磁性传感器区域和与磁性传感器区域耦合的传感器。 每个磁性输入/沟道区域在第一方向上被磁偏置。 磁传感器区域在不同于第一方向的第二方向上被磁偏置,使得如果逻辑器件处于静止状态,则域壁驻留在磁性输入/沟道区域中。 传感器基于磁传感器区域的磁状态输出信号。 输入/通道区域和磁性传感器区域被配置为使得响应于提供给磁性输入区域的逻辑信号,畴壁可以移动到磁性传感器区域中。 磁性输入/通道区域包括FexCoyNizM1q1M2q2,x + y + z + q1 + q2 = 1,x,y,z,q1,q2至少为零,M1和M2为非磁性。