Abstract:
An apparatus is disclosed wherein laser radiation illuminates a sample using all reflective optics and wherein in-elastically scattered light from the sample is collected using the identical elements. The apparatus obviates the problem of contaminating the laser radiation with unwanted spectra from transmissive optics while providing very high rejection of the laser radiation with respect to the in-elastically scattered light. In addition, the apparatus can collect and launch light with high numerical aperture and large field of view.
Abstract:
In one example embodiment, a host device includes a front panel, a bezel assembly, a floating PCB, and two host guides. The front panel defines an opening configured to receive a pluggable module in a plugging direction. The bezel assembly defines an opening configured to align with the front panel opening and to receive the pluggable module, the bezel assembly rigidly secured to the front panel. The host guides are rigidly secured to the floating PCB and are configured to guide the pluggable module when it is plugged into the host device. The host guides and bezel assembly operate together to allow the floating PCB to float with respect to the front panel in the plugging direction while remaining substantially aligned with the front panel in directions normal to the plugging direction.
Abstract:
An apparatus comprising an optical window transmits both an excitation beam to a sample and scattered light from the sample which is within the angular range of the collection optics. Scattered light from the sample outside the angular range of the collection optics is re-directed back to the sample by reflection from one or more surfaces of the apparatus. As a result, the magnitude of scattered light collected is increased.
Abstract:
In one example, a host system includes a PCB, a plurality of rails disposed on the PCB, and a connector disposed on the PCB. The PCB, rails and connector define a slot configured to receive an optoelectronic module. The host system further includes means for removably mounting a modular heatsink to the host system such that the host system directly contacts the optoelectronic module when the optoelectronic module is fully inserted into the slot. The means for removably mounting has a standardized arrangement such that any modular heatsink having a mounting arrangement that is complementary to the standardized arranged can be removably mounted to the host system.
Abstract:
An apparatus consisting of two pairs of identical lenses which is suitable as a compound objective lens for high numerical aperture imaging is disclosed. The compound lens also has a wide field of view as a fraction of the compound lens focal length. By suitable choice of lens materials, well corrected near infrared imaging can be achieved. When two such compound lenses together with a diffraction grating are assembled into a spectrometer, excellent wavelength resolution in the near infrared can also be obtained.
Abstract:
An edge connector suitable for attachment with a printed circuit board. The edge connector comprises a body composed of a plastic resin, the body defining a first end that is configured to operably attach to a portion of a printed circuit board and a second end configured to operably connect to a slot in a host device and a plurality of conductive traces and contact pads defined on a portion of a surface of the body, the traces being configured to electrically connect with corresponding traces defined on the printed circuit board.
Abstract:
A transceiver module is provided that includes an optical subassembly having an extension with traces corresponding to traces defined on an associated transceiver substrate. A connector element including a flexible, non-electrically conductive substrate within which is disposed an array of conductors is placed between overlapping portions of the extension and the transceiver substrate so that upper ends of some of the conductors contact the traces of the extension, while lower ends of those same conductors contact the corresponding traces of the transceiver substrate. In this way, the connector element provides electrical communication between the optical subassembly and transceiver substrate, while also accommodating misalignment that may be present, or develop, in the transceiver module components.
Abstract:
In one example, an optical subassembly positioning plate is provided that includes a substantially flat body that defines at least one edge. A port is defined in the body. The port is configured to receive and secure an optical subassembly in an x-direction and a y-direction when said optical subassembly positioning plate is positioned within an optoelectronic transceiver module. A plurality of fingers is defined along at least one edge of the body. Each of the plurality of fingers is configured to contact a shell of the optoelectronic transceiver module so as to bias a flange of the optical subassembly against a portion of the shell of the optoelectronic transceiver module such that the optical subassembly is substantially retained in a z-direction when the optical subassembly positioning plate is positioned within the optoelectronic transceiver module.
Abstract:
In one example embodiment, a pluggable optoelectronic module includes a shell with a front, back, and first and second sides. A first guiderail protrudes from the first side and extends from the front of the shell to the back of the shell. A second guiderail protrudes from the second side and also extends from the front of the shell to the back of the shell. A first thumbscrew runs the length of the module and is housed within the first guiderail. A second thumbscrew also runs the length of the module and is housed within the second guiderail. The two thumbscrews are configured to secure the module to a host device when the module is plugged into the host device.
Abstract:
An electromagnetic interference (“EMI”) shield that can help control the emission of electromagnetic radiation from an optoelectronic module in which the EMI shield is positioned. In one example embodiment, an EMI shield includes a base and plurality of flanges extending from a perimeter of the base. The base defines an optical subassembly (“OSA”) opening and a plurality of complementary structures. The OSA opening is configured to receive an OSA. Each complementary structure is configured to engage a complementary structure of an OSA connector block.