摘要:
Embodiments of systems, apparatuses, and methods for performing in a computer processor vector packed horizontal partial sum of packed data elements in response to a single vector packed horizontal sum instruction that includes a destination vector register operand, a source vector register operand, and an opcode are described.
摘要:
Embodiments of systems, apparatuses, and methods for performing in a computer processor absolute difference calculation in response to a single vector packed absolute difference instruction that includes a first and second source vector register operand, a destination vector register operand, and an opcode are described.
摘要:
A processor includes an execution unit, a fault mask coupled to the execution unit, and a suppress mask coupled to the execution unit. The fault mask is to store a first plurality of bit values to indicate which elements of a multi-element vector have an associated fault generated in response to execution of an instruction on the element in the execution unit. The suppress mask is to store a second plurality of bit values to indicate which of the elements are to have an associated fault suppressed. The processor also includes counter logic to increment a counter in response to an indication of a first fault associated with the first element and received from the fault mask, and an indication of a first suppression associated with the first element and received from the suppress mask. Other embodiments are described as claimed.
摘要:
Instructions and logic provide SIMD address conflict detection functionality. Some embodiments include processors with a register with a variable plurality of data fields, each of the data fields to store an offset for a data element in a memory. A destination register has corresponding data fields, each of these data fields to store a variable second plurality of bits to store a conflict mask having a mask bit for each offset. Responsive to decoding a vector conflict instruction, execution units compare the offset in each data field with every less significant data field to determine if they hold a matching offset, and in corresponding conflict masks in the destination register, set any mask bits corresponding to a less significant data field with a matching offset. Vector address conflict detection can be used with variable sized elements and to generate conflict masks to resolve dependencies in gather-modify-scatter SIMD operations.
摘要:
Instructions and logic provide SIMD address conflict resolution with vector population count functionality. Some embodiments include processors with a register with a variable plurality of data fields, each of the data fields to store a variable second plurality of bits. A destination register has corresponding data fields, each of these data fields to store a count of the number of bits set to one for corresponding data fields. Responsive to decoding a vector population count instruction, execution units count the number of bits set to one for each of data fields in the register, and store the counts in corresponding data fields of the first destination register. Vector population count instructions can be used with variable sized elements and conflict masks to generate iteration counts and completion masks to be used each iteration to resolve dependencies in gather-modify-scatter SIMD operations.
摘要:
A method of an aspect includes receiving a packed data rearrangement control indexes generation instruction. The packed data rearrangement control indexes generation instruction indicates a destination storage location. A result is stored in the destination storage location in response to the packed data rearrangement control indexes generation instruction. The result includes a sequence of at least four non-negative integers representing packed data rearrangement control indexes. In an aspect, values of the at least four non-negative integers are not calculated using a result of a preceding instruction. Other methods, apparatus, systems, and instructions are disclosed.
摘要:
Embodiments of systems, apparatuses, and methods for performing in a computer processor vector double block packed sum of absolute differences (SAD) in response to a single vector double block packed sum of absolute differences instruction that includes a destination vector register operand, first and second source operands, an immediate, and an opcode are described.
摘要:
A method of an aspect includes receiving an instruction indicating a destination storage location. A result is stored in the destination storage location in response to the instruction. The result includes a sequence of at least four non-negative integers in numerical order with all integers in consecutive positions differing by a constant stride of at least two. In an aspect, storing the result including the sequence of the at least four integers is performed without calculating the at least four integers using a result of a preceding instruction. Other methods, apparatus, systems, and instructions are disclosed.
摘要:
A loop remainder mask instruction indicates a current iteration count of a loop as a first operand, an iteration limit of a loop as a second operand, and a destination. The loop contains iterations and each iteration includes a data element of the array. A processor receives the loop remainder mask instruction, decodes the instruction for execution, and stores a result of the execution in the destination. The result indicates a number of data elements of the array past an end of a preceding portion of the array that are to be handled separately from the preceding portion, the end of the preceding portion being where the current iteration count is recorded.
摘要:
A processing core implemented on a semiconductor chip is described. The processing core includes logic circuitry to identify whether vector instructions and integer scalar instructions are to be executed with two registers or three registers, where, in the case of two registers input operand information is destroyed in one of two registers, and, in the case of three registers input operand is not destroyed. The processing core also includes steering circuitry coupled to the logic circuitry. The steering circuitry is to control first data paths between scalar integer execution units and a scalar integer register bank such that two registers are accessed from the scalar register bank if two register execution is identified for the scalar integer instructions or three registers are accessed from the scalar integer register bank if three register execution is identified for the scalar integer instructions. The steering circuitry is also to control second data paths between vector execution units and a vector register bank such that two registers are accessed from the vector register bank if two register execution is identified for the vector instructions or three registers are accessed from the vector register bank if three register execution is identified for the vector instructions.