Abstract:
The present disclosure is directed to a system and method for modulating a voltage output of a hybrid converter system having first and second set of Si-based power electronic devices coupled to first and second voltage source, respectively, and a first set of SiC-based power electronic devices coupled to the first and second sets of Si-based power electronic devices. The method includes switching between operational states of the hybrid converter system based on a desired voltage output, wherein each operational state includes one of the Si-based power electronic devices from the first and second sets of Si-based power electronic devices and one of the SiC-based devices from the first set of SiC-based power electronic devices being switched on and the remaining power electronic devices being switched off. Each SiC-based power electronic device of the first set of SiC-based power electronic devices switches at a higher frequency as compared to each Si-based power electronic device of the first and second sets of the Si-based power electronic devices.
Abstract:
A power system for a marine ship includes a plurality of protection zones, wherein at least two protection zones are coupled to each other via at least one bus-tie converter. Each of the protection zones includes a plurality of direct current (DC) buses; wherein DC buses which do not have same DC voltage are coupled to each other via at least one DC to DC converter. Furthermore, at least one energy source is coupled to at least one DC bus via a power electronic converter.
Abstract:
A power system for a marine ship includes a plurality of protection zones, wherein at least two protection zones are coupled to each other via at least one bus-tie converter. Each of the protection zones includes a plurality of direct current (DC) buses and a plurality of power converters. The bus-tie converter includes at least two converter legs coupled by at least one inductor. Each converter leg includes a first branch connected with a snubber circuit. The first branch includes two outer switching devices and at least one inner switching device connected between the two outer switching devices. The first branch also includes a damping resistor coupled between the two outer switching devices to dissipate a fault current. The snubber circuit includes a combination of a diode, a resistor and a capacitor. A controller controls the operation of the plurality of power converters and the at least one bus-tie converter.
Abstract:
Systems and methods for controlling an electrical power supply are provided. One system includes an input configured for receiving voltage measurement signals for the power supply and a controller for one or more electrical phases of the power supply. The controller includes an integrator configured to integrate the received voltage measurement signals and to generate integrated control signals or integrated error signals. The controller is configured to generate an output signal using the integrated control signals or the integrated error signals. The system also includes an output configured to output the output signal to control switching of the power supply.
Abstract:
A power converter including one or more converter legs is provided. Each converter leg includes a first string including a plurality of switches coupled to each other in series. The one or more converter legs also include a second string operatively coupled to the first string at a first node and a second node in a parallel configuration, where the second string includes a plurality of switching units, and where a second string of one converter leg of the one or more converter legs is operatively coupled to second strings corresponding to other converter legs in the one or more converter legs.
Abstract:
A system and method for series connecting electronic power devices are disclosed. In one embodiment, a switching device system includes a first upper arm electrically coupled to a first lower arm and a second upper arm electrically coupled to a second lower arm. Each of the arms include a plurality of low voltage sub-modules connected in series and each plurality of low voltage sub-modules includes an auxiliary switching device, a series switching device, and a capacitor. Each plurality of low voltage sub-modules is configured to be sequentially switched using the auxiliary switching device and the series switching device separately in the upper arms and the respective lower arms to control change in voltage over time (dV/dt) while selectively blocking a desired high voltage. Further, a capacitor voltage balancing (sorting or rotating) algorithm may be used to actively balance voltage across each plurality of low voltage sub-modules.
Abstract:
A power converter is presented. The power converter includes at least one leg, the at least one leg includes a first string, where the first string includes a plurality of diodes, a first connecting node, and a second connecting node, and where the first string is operatively coupled across a first bus and a second bus. Furthermore, the at least one leg includes a second string operatively coupled to the first string via the first connecting node and the second connecting node, where the second string includes a plurality of switching units.
Abstract:
A power transmission system includes a first unit for carrying out the steps of receiving high voltage direct current (HVDC) power from an HVDC power line, generating an alternating current (AC) component indicative of a status of the first unit, and adding the AC component to the HVDC power line. Further, the power transmission system includes a second unit for carrying out the steps of generating a direct current (DC) voltage to transfer the HVDC power on the HVDC power line, wherein the HVDC power line is coupled between the first unit and the second unit, detecting a presence or an absence of the added AC component in the HVDC power line, and determining the status of the first unit based on the added AC component.
Abstract:
A high-voltage DC (HVDC) power system and a method of controlling and protecting the HVDC power system includes a plurality of sending-end (SE) modules coupled in electrical series and a plurality of receiving-end (RE) power converter modules electrically coupled to said plurality of SE modules, the RE modules coupled in a switchyard configuration, the switchyard configuration including a plurality of load branches coupled together in electrical series, each load branch including a branch bypass switch configured to bypass load current around an associated load branch, and a branch protection system.
Abstract:
A power transmission system includes a first unit for carrying out the steps of receiving high voltage direct current (HVDC) power from an HVDC power line, generating an alternating current (AC) component indicative of a status of the first unit, and adding the AC component to the HVDC power line. Further, the power transmission system includes a second unit for carrying out the steps of generating a direct current (DC) voltage to transfer the HVDC power on the HVDC power line, wherein the HVDC power line is coupled between the first unit and the second unit, detecting a presence or an absence of the added AC component in the HVDC power line, and determining the status of the first unit based on the added AC component.