Abstract:
A thermal comfort device comprises a pair of selectively contractable piezo-electric diaphragms and a body sandwiched between the pair of diaphragms, the body defines a cavity and an opening, wherein, the piezo-electric diaphragms are adapted to be selectively contracted to flex outward, drawing air into the cavity, and to flex inward, forcing air out of the cavity, each of the piezo-electric diaphragms adapted to be selectively controlled by varying the voltage and the frequency, wherein the velocity of the air being forced outward from the cavity is selectively variable, and a thermo-electric device adapted to thermally condition air forced outward from the cavity by one of heating and cooling the air forced outward from the cavity, wherein the thermo-electric device is positioned at one of within the cavity and outside the cavity aligned with the opening.
Abstract:
An apparatus configured to induce airflow over a sensor lens is provide. The apparatus includes a sensor lens; and a plasma actuator. The plasma actuator may include a dielectric element, a first electrode disposed under the dielectric element, a second electrode disposed on the dielectric element such that the second electrode is exposed, and a plasma layer disposed in between the first electrode and the second electrode. The plasma actuator may be disposed at a periphery of the sensor lens.
Abstract:
A method of on-line diagnostic and prognostic assessment of an autonomous vehicle perception system includes detecting, via a sensor, a physical parameter of an object external to the vehicle. The method also includes communicating data representing the physical parameter via the sensor to an electronic controller. The method additionally includes comparing the data from the sensor to data representing the physical parameter generated by a geo-source model. The method also includes comparing results generated by a perception software during analysis of the data from the sensor to labels representing the physical parameter from the geo-source model. Furthermore, the method includes generating a prognostic assessment of a ground truth for the physical parameter of the object using the comparisons of the sensor data to the geo-source model data and of the software results to the geo-source model labels. A system for on-line assessment of the vehicle perception system is also disclosed.
Abstract:
A method for providing operation data onboard a first vehicle with autonomous capabilities. The method presents an image of an exterior view from the first vehicle with autonomous capabilities, by a user interface touchscreen communicatively coupled to a processor and system memory element; receives user input data to manipulate the image, via the user interface touchscreen; adjusts the image, by the processor, based on the user input data; modifies an operation parameter of the first vehicle with autonomous capabilities, by the processor, based on the user input data, to generate a modified operation parameter, wherein the operation parameter comprises at least one of a following distance, a stopping distance, or a turning speed; and transmits the modified operation parameter, via a communication device communicatively coupled to the processor.
Abstract:
A method for use with a vehicle having one or more subsystems includes receiving vehicle health management (VHM) information via a controller indicative of a state of health of the subsystem. The VHM information is based on prior testing results of the subsystem. The method includes determining a required testing profile using the testing results, applying the testing profile to the subsystem to thereby control a state of the subsystem, and measuring a response of the subsystem to the applied testing profile. The method also includes recording additional testing results in memory of the controller that is indicative of a response of the subsystem to the applied testing profile. The vehicle includes a plurality of subsystems and a controller configured to execute the method.
Abstract:
A system and method for assisting vehicle parking is disclosed. The method includes transmitting, by an electronic controller of a vehicle, a parking space request. The parking space request is transmitted to a reservation system. The reservation system determines whether a parking space is available to fulfill the parking space request. The determining is based on availability information that is received from a parking infrastructure. The method also includes receiving an indication. The indication indicates whether a parking spot has been reserved to fulfill the parking space request.
Abstract:
A method for mitigating an electrical actuator fault in a system containing multiple actuators includes: applying multiple predetermined conditions to each of multiple actuators in a vehicle system to identify when at least one of the multiple actuators is in a faulted condition; and increasing an input voltage to all of the actuators to increase an output of the at least one of the multiple actuators in the faulted condition to mitigate the faulted condition.
Abstract:
Examples of techniques for triggering control of a zone of a vehicle using a zone image overlay on an in-vehicle display are disclosed. In one example implementation, a method may include: displaying a primary image on the in-vehicle display; overlaying a zone image as the zone image overlay onto the primary image on the in-vehicle display, wherein the zone image overlay is associated with the zone of the vehicle; receiving a selection of the zone image overlay; responsive to receiving the selected zone image overlay, displaying a control interface on the in-vehicle display, wherein the control interface comprises a selectable option for controlling an aspect of the zone; and responsive to receiving a selection of the selectable option for controlling the aspect of the zone, adjusting the aspect of the zone based on the selection.
Abstract:
A system, for use in evaluating operation of a vehicle, includes a hardware-based processing unit, and a non-transitory computer-readable storage component including various functioning modules. The modules in various embodiments include an input module that, when executed by the hardware-based processing unit, receives, from a vehicle-braking sensor, braking data indicting characteristics of a braking event at the vehicle. The system in some implementations includes an input unit receiving the braking data from the sensor and passing it to a braking-monitoring module. The braking-monitoring module, when executed by the hardware-based processing unit, determines, based on the braking data, whether the braking event is within an acceptable pre-established limit. The technology in various embodiments includes processes performed by the system and algorithms used therein.
Abstract:
A number of variations may include a product including an extruded support beam constructed and arranged to be used as an inner support for a vehicle end gate.