Abstract:
An environmental control system (ECS) pack is provided including a primary heat exchanger, a secondary heat exchanger, and an air cycle machine. The air cycle machine includes a compressor and a turbine. The compressor is fluidly coupled to an outlet of the primary heat exchanger and to an inlet of the secondary heat exchanger. The outlet of the secondary heat exchanger is fluidly coupled to the turbine. A first conduit connects the outlet of the primary heat exchanger and the inlet of the secondary heat exchanger. The first conduit includes a first valve. A second conduit connects the outlet of the secondary heat exchanger to an air load. The second conduit includes a second valve.
Abstract:
Embodiments relate to heat exchanger contamination monitoring in an air conditioning system. An aspect includes receiving, by a contamination monitoring logic from a primary heat exchanger outlet temperature sensor, a first temperature comprising an air temperature at an outlet of a primary heat exchanger. Another aspect includes receiving, from a secondary heat exchanger outlet temperature sensor, a second temperature comprising an air temperature at an outlet of a secondary heat exchanger. Another aspect includes receiving, from a compressor outlet temperature sensor, a third temperature comprising an air temperature at an outlet of a compressor. Another aspect includes determining, based on the first, second, and third temperature, a heat exchanger contamination value. Another aspect includes comparing the heat exchanger contamination value to a predetermined contamination threshold. Another aspect includes based on the heat exchanger contamination value being greater than the predetermined contamination threshold, sending a maintenance warning.
Abstract:
A method and system for predicting heat exchanger blockage in an aircraft is provided. The method includes generating a reduced order model (ROM) that predicts a ram air fan (RAF) surge margin that correlates to a heat exchanger blockage parameter, calculating, using the ROM, a predicted RAF surge margin value using a sensor signal received from a sensor connected to a ram air fan (RAF), calculating the heat exchanger blockage parameter using at least the predicted RAF surge margin value, and reporting, to a user, the heat exchanger blockage parameter that indicates when a heat exchanger blockage condition is present.
Abstract:
A system is provided. The system includes a first environmental control sub-system, operating in a first mode, that receives a first medium at a first flow amount and a first pressure. The system also includes a second environmental control sub-system, operating in a second mode, that receives a second medium at a second flow amount and a second pressure. The first flow amount is greater than the second flow amount, and the second pressure is greater than the first pressure.
Abstract:
A system includes an inlet line configured to receive a medium flowing from a low-pressure location of an engine to a chamber, a plurality of heat exchangers configured to receive the medium from the inlet line, and a valve located upstream from the plurality of heat exchangers. The valve is configured to divide in parallel the medium across at least a first heat exchanger and a second heat exchanger of the plurality of heat exchangers. A recirculation air system is configured to supply a recirculation
Abstract:
A system and method that comprises an air cycle machine, a flow of bleed air, at least one heat exchanger, and an inlet configured to supply the flow of the bleed air is provided. The bleed air directly flows from a source to either a compressor of the air cycle machine or the at least one heat exchanger in accordance with a high pressure, low pressure, or pressure boost operation mode. The system and method also can also utilize recirculated air flowing from the chamber to drive or maintain the air cycle machine in accordance with the above modes.
Abstract:
A method and apparatus for operating an air cycle machine is disclosed. The apparatus includes a detector for measuring a rotational speed of a component of the air cycle machine. A processor estimates a rate of change of rotational speed of the component from the measured rotational speed and shuts down the air cycle machine when the estimated rate of change of the rotational speed of the component is greater than a selected rate threshold.
Abstract:
A system, which includes a plurality of heat exchangers and a compressing device, prepares a medium bled from a low-pressure location of an engine and flowing through a plurality of heat exchangers into a chamber. The compressing device is in communication with the plurality of heat exchangers and regulates a pressure of the medium flowing through the plurality of heat exchangers. The compressing device includes a turbine that provides supplemental power to the compressing device based on a pressure of the medium in the chamber.
Abstract:
A method includes receiving a sampled input, the sampled input being a result of a detection device sensing a plurality of environmental conditions by an air cycle machine; processing the sampled input to detect whether the plurality of environmental conditions includes a deviation from an expected operation of the air cycle machine; and generating a notification output in response to the plurality of environmental conditions including the deviation from the expected operation of the air cycle machine.
Abstract:
An engine compressor bleed system of an engine for an aircraft is provided including a plurality of compressor pressure ports configured to supply bleed air to satisfy a cooling load for at least a first stage of a flight profile of an aircraft. A first pressure port of the plurality of compressor pressure ports is configured to provide bleed air having a pressure at least equal to a cabin pressure of an aircraft and a temperature that does not exceed a predetermined threshold.