Abstract:
A pixel structure of a display panel is provided. The pixel structure includes a first storage capacitor formed by a pixel electrode and a common electrode pattern, and a second storage capacitor formed by an electrode pattern and the common electrode pattern. Accordingly, the storage capacitance is greatly improved without sacrificing the aperture ratio, or the aperture ratio is improved by reducing the area of the storage capacitor while the storage capacitance is maintained.
Abstract:
A pixel structure of a display panel is provided. The pixel structure includes a first storage capacitor formed by a pixel electrode and a common electrode pattern, and a second storage capacitor formed by an electrode pattern and the common electrode pattern. Accordingly, the storage capacitance is greatly improved without sacrificing the aperture ratio, or the aperture ratio is improved by reducing the area of the storage capacitor while the storage capacitance is maintained.
Abstract:
A pixel structure is provided. The pixel structure comprises a lower substrate with a transistor and pixel area; a first patterned conductive layer, which has a data line and a gate within the transistor area that is disposed on the lower substrate; a patterned insulator layer covering the first patterned conductive layer; an active layer disposed on the patterned insulator layer above the gate; a second patterned conductive layer with a gate line disposed on the patterned insulator layer, source and drain, wherein the source and the drain are disposed on the active layer; a pixel electrode disposed on the patterned insulator layer and electrically connected to the drain; a patterned passivation layer disposed on the patterned insulator layer, gate line, source, drain and pixel electrode; and a third patterned conductive layer, which has a data line connecting electrode, a gate line connecting electrode, at least one alignment electrode and a common electrode. The data line is electrically connected to the source through the data line connecting electrode; the gate line is electrically connected to the gate through the gate line connecting electrode; the alignment electrode is electrically connected to the pixel electrode; and a portion of the common electrode is disposed above the data line.
Abstract:
A manufacturing method of a color filter comprising the following steps is provided. At first, a transparent substrate is provided. Next, a black matrix is formed on the transparent substrate to define a plurality of pixel areas on the transparent substrate. Then, an isolation layer is formed and patterned on the black matrix and then Red/Green/Blue color filter inks are filled into each of the pixel areas separately by inkjet printing. After that, the color filter inks are dried to form color filter units and optionally the isolation layer can further be patterned to form plenty of photo spacers on the black matrix. The isolation layers prevented the color filter inks from spilling out of the pixel areas and color mixing problems during color filter inkjet fabrication. Besides, it is characterized that the color filter units can be formed with even thickness.
Abstract:
A pixel structure is disclosed. The pixel structure includes a substrate, a first data line having at least one end formed on the substrate, a first insulation layer overlying the first data line and exposing a part of the end of the first data line, a shielding electrode disposed on the first insulation layer and overlapped with the first data line, a second data line formed on the first insulation layer and electrically connected to the exposed end of the first data line, a second insulation layer overlying the shielding electrode and the second data line, and a pixel electrode formed on the second insulation layer and overlapped with the shielding electrode. The invention also provides a method for fabricating the pixel structure.
Abstract:
A liquid crystal display includes: a substrate; a plurality of pixel electrodes formed on the substrate and arranged corresponding to a pixel array; a first data line and a second data line formed on the substrate; a plurality of scan lines formed on the substrate, in which the scan lines cross the first data line and the second data line; a first branch electrode electrically connects a pixel electrode and partially overlaps the first data line; and a second branch electrode electrically connects the pixel electrode and partially overlaps the second data line, in which the first branch electrode and the second branch electrode are disposed opposite to the pixel electrode.
Abstract:
A pixel structure of a liquid crystal display (LCD) includes a scan line, a data line and a thin film transistor (TFT) disposed on the substrate. The TFT has a source electrically connected to the date line and a gate electrically connected to the scan line. A shielding electrode disposes on the substrate, wherein the same metal layer makes the shielding electrode, the source and the drain. Furthermore, the data line makes at least two different patterned metal, layers which are not formed simultaneously and the patterned metal layers are electrically connected to each other. A pixel electrode covers the part of the shielding electrode and electrically connects to the drain.
Abstract:
An active matrix substrate including a substrate, a plurality of scan lines, a plurality of data lines and a plurality of sub-pixels is provided. The scan lines and the data lines are disposed on the substrate, and define a plurality of sub-pixel regions distributed in a delta arrangement. The sub-pixels corresponding to the sub-pixel regions are disposed on the substrate. The sub-pixels are electrically connected with corresponding scan lines and corresponding data lines. Between two sub-pixel regions corresponding to any two adjacent sub-pixels at a same side of one scan line, there are two data lines. Each sub-pixel includes an active device and a pixel electrode. The active device is electrically connected with a corresponding scan line and a corresponding data line. The pixel electrode is electrically connected with the active device, and extends from the sub-pixel region corresponding to the sub-pixel to a position over the data line.
Abstract:
The present invention discloses a method for depositing a coating layer on an article without edge bead formation by integrating the steps of an edge bead rinsing process with a coating spin-out process such that an edge portion of the wafer can be efficiently cleaned with a cleaning solvent when the coating material is still in its liquid state. While the present invention method can be applied to any coating materials and to any coated substrate, it is particularly suitable for cleaning a spin-on-glass material from a semiconductor wafer such that the wafer edge is not coated with a SOG material and thus particulate contamination caused by cracked SOG from the wafer edge can be avoided.
Abstract:
A pixel structure and a manufacturing method thereof are provided. The pixel structure includes a substrate, a scan line, a data line, a first insulating layer, an active device, a second insulating layer, a common electrode and a first pixel electrode. The data line crossed to the scan line is disposed on the substrate and includes a linear transmitting part and a cross-line transmitting part. The first insulating layer covering the scan line and the linear transmitting part is disposed between the scan line and the cross-line transmitting part. The active device, including a gate, an oxide channel, a source and a drain, is connected to the scan line and the data line. The second insulating layer is disposed on the oxide channel and the linear transmitting part. The common electrode is disposed above the linear transmitting part. The first pixel electrode is connected to the drain.