摘要:
An LED package frame includes an LED chip and a heat conductive member made of high heat conductivity material. The heat conductive member has a receiving part at a lateral portion, and is mounted with the LED chip. A lead-coating assembly configured to be inserted into the receiving part of the heat conductive member, including a lead is inserted at one end into the receiving part of the heat conductive member, and electrically connected to the LED chip. An electrically insulating layer is placed in tight contact between the lead and the receiving part of the heat conductive member isolates the lead from the receiving part. With the lead inserted into the heat conductive member, it is possible to reduce size while maintaining high heat conductivity and stability.
摘要:
An LED package frame includes an LED chip and a heat conductive member made of high heat conductivity material. The heat conductive member has a receiving part at a lateral portion, and is mounted with the LED chip. A lead-coating assembly configured to be inserted into the receiving part of the heat conductive member, including a lead is inserted at one end into the receiving part of the heat conductive member, and electrically connected to the LED chip. An electrically insulating layer is placed in tight contact between the lead and the receiving part of the heat conductive member isolates the lead from the receiving part. With the lead inserted into the heat conductive member, it is possible to reduce size while maintaining high heat conductivity and stability.
摘要:
A white light emitting device including: a blue light emitting diode chip having a dominant wavelength of 443 to 455 nm; a red phosphor disposed around the blue light emitting diode chip, the red phosphor excited by the blue light emitting diode chip to emit red light; and a green phosphor disposed around the blue light emitting diode chip, the green phosphor excited by the blue light emitting diode chip to emit green light, wherein the red light emitted from the red phosphor has a color coordinate falling within a space defined by four coordinate points (0.5448, 0.4544), (0.7079, 0.2920), (0.6427, 0.2905) and (0.4794, 0.4633) based on the CIE 1931 chromaticity diagram, and the green light emitted from the green phosphor has a color coordinate falling within a space defined by four coordinate points (0.1270, 0.8037), (0.4117, 0.5861), (0.4197, 0.5316) and (0.2555, 0.5030) based on the CIE 1931 color chromaticity diagram.
摘要:
An LED package used as a light source in a backlight assembly for an LCD includes a substrate, a plurality of light scattering protrusions on the upper surface of the substrate, LEDs separated from each other by designated intervals and arranged in a line on the substrate, and a molding portion, for sealing the upper surface of the substrate including the LEDs, and having an upper surface including two cylindrical surface sections. Each of the cylindrical surface sections has a curvature for totally reflecting light emitted from the LEDs.
摘要:
A white light emitting device including: a blue light emitting diode chip having a dominant wavelength of 443 to 455 nm; a red phosphor disposed around the blue light emitting diode chip, the red phosphor excited by the blue light emitting diode chip to emit red light; and a green phosphor disposed around the blue light emitting diode chip, the green phosphor excited by the blue light emitting diode chip to emit green light, wherein the red light emitted from the red phosphor has a color coordinate falling within a space defined by four coordinate points (0.5448, 0.4544), (0.7079, 0.2920), (0.6427, 0.2905) and (0.4794, 0.4633) based on the CIE 1931 chromaticity diagram, and the green light emitted from the green phosphor has a color coordinate falling within a space defined by four coordinate points (0.1270, 0.8037), (0.4117, 0.5861), (0.4197, 0.5316) and (0.2555, 0.5030) based on the CIE 1931 color chromaticity diagram.
摘要:
A direct-illumination backlight apparatus using LEDs includes a flat reflective plate, an LED light source, a transparent plate, a scattering pattern, and a light guide. The light guide serves to introduce a partial light from an LED light source at such an angle that the partial light is trapped inside the transparent plate, and the scattering pattern serves to scatter the trapped light beam at a position directly above the LED light source so that the scattered light beam escapes out of the transparent plate toward an LCD panel.
摘要:
A side-emission type LED package is provided. The LED package includes an LED chip, a lower structure, and an upper structure. The lower structure has a lower mirror and a transparent sealing member. The lower structure supports the LED chip. The lower mirror is extended upward and outward@ from the LED chip so as to reflect light from the LED chip upward. The transparent sealing member is formed around the LED chip inside the lower mirror. The upper structure is combined to an upper portion of the lower structure so as to reflect the light reflected upward by the lower structure to a radial lateral direction. As described above, the lower structure and the upper structure are separately provided and combined with each other, whereby molding efficiency of the sealing member is improved and the side-emission type LED package can be manufactured in an easy manner.
摘要:
There are provided a printed circuit board connector for a backlight unit and a chassis using the same. The printed circuit board connector for a backlight unit including: a horizontal supporter; a vertical supporter having one end connected to the horizontal supporter to divide the horizontal supporter into first and second areas; at least one connecting terminal formed on the horizontal supporter to be partially exposed in each of the first and second areas of the horizontal supporter, wherein the connecting terminal electrically connects printed circuit boards having one ends placed on the first and second areas, respectively.
摘要:
Disclosed herein is a vertical light emitting type backlight module, for irradiating white light to the rear side of a liquid crystal display in the perpendicular direction. The vertical light emitting type backlight module comprises a) one or more LED array modules, each comprising a substrate having conductive patterns printed on upper and lower surfaces of the substrate, respectively, a plurality of LED devices mounted on the upper and lower surfaces of the substrate, respectively, for emitting light toward the front of respective surfaces of the substrate with the LED devices mounted thereon, and a plurality of lenses formed to surround the LED devices, respectively, for directing the light emitted from the LED devices in a direction perpendicular to the LED while being within a predetermined angle from an axis parallel to a plane of the backlight module, the substrate being mounted perpendicular to the plane of the backlight module such that the light emitted from the LED devices is emitted in a direction approximately parallel to the plane of the backlight module, and b) a reflection plate for each of the LED array modules for reflecting the light spread in the horizontal direction to change path of the light to the perpendicular direction.
摘要:
Disclosed herein is a light emitting diode (LED) device. The light emitting diode device comprises a package formed with a terminal for applying an electrical signal, one or more LED chips mounted on the package such that the LED chips are electrically connected to the terminal, a lens formed to surround the LED chips on the package for changing path of light emitted from the LED chips to the horizontal direction with the difference of the refraction rates of the media, and a reflector formed on the lens for reflecting the light, emitted above the lens without being refracted in the horizontal direction at the lens, to the horizontal direction. The LED device reflects the light, which is deviated from the optical design range of the lens and emitted above the lens, back to the lens, thereby preventing the hot spot from being generated, and enhancing horizontal emission efficiency of the light.