Abstract:
In accordance with an embodiment of the present invention, a method of forming a semiconductor device includes forming a sacrificial layer over a first surface of a workpiece having the first surface and an opposite second surface. A membrane is formed over the sacrificial layer. A through hole is etched through the workpiece from the second surface to expose a surface of the sacrificial layer. At least a portion of the sacrificial layer is removed from the second surface to form a cavity under the membrane. The cavity is aligned with the membrane.
Abstract:
In accordance with an embodiment of the present invention, a method of forming a semiconductor device includes forming a sacrificial layer over a first surface of a workpiece having the first surface and an opposite second surface. A membrane is formed over the sacrificial layer. A through hole is etched through the workpiece from the second surface to expose a surface of the sacrificial layer. At least a portion of the sacrificial layer is removed from the second surface to form a cavity under the membrane. The cavity is aligned with the membrane.
Abstract:
In one embodiment, a method of forming a semiconductor device includes forming a first inductor coil within and/or over a substrate. The first inductor coil is formed adjacent a top side of the substrate. First trenches are formed within the substrate adjacent the first inductor coil. The first trenches are filled at least partially with a magnetic fill material. At least a first portion of the substrate underlying the first inductor coil is thinned. A backside magnetic layer is formed under the first portion of the substrate. The backside magnetic layer and the magnetic fill material form at least a part of a magnetic core region of the first inductor coil.
Abstract:
A protective structure may include: a semiconductor substrate having a doping of a first conductivity type; a semiconductor layer having a doping of a second conductivity type arranged at a surface of the semiconductor substrate; a buried layer having a doping of the second conductivity type arranged in a first region of the semiconductor layer and at the junction between the semiconductor layer and the semiconductor substrate; a first dopant zone having a doping of the first conductivity type arranged in the first region of the semiconductor layer above the buried layer; a second dopant zone having a doping of the second conductivity type arranged in a second region of the semiconductor layer; an electrical insulation arranged between the first region and the second region of the semiconductor layer; and a common connection device for the first dopant zone and the second dopant zone.
Abstract:
In one embodiment, a method of forming a semiconductor device includes forming a first inductor coil within and/or over a substrate. The first inductor coil is formed adjacent a top side of the substrate. First trenches are formed within the substrate adjacent the first inductor coil. The first trenches are filled at least partially with a magnetic fill material. At least a first portion of the substrate underlying the first inductor coil is thinned. A backside magnetic layer is formed under the first portion of the substrate. The backside magnetic layer and the magnetic fill material form at least a part of a magnetic core region of the first inductor coil.