Abstract:
A method for determining the force applied to a tip of a medical instrument includes receiving inputs from a medical instrument having at least one elongated actuation element used to manipulate a position of the instrument while in a patient's body. The method also includes applying the inputs to a lumped model of the instrument and determining a force on a tip of the instrument based on both the inputs and the lumped model.
Abstract:
A medical system may comprise a catheter having a main lumen and a distal tip positioned in a working configuration at a working location. The medical system may also comprise a sensor system coupled to the catheter to generate measurement signals. The medical system may also comprise a control system. The control system may be configured to receive the measurement signals from the sensor system. The control system may be operable to identify from the received measurement signals the working configuration of the distal tip of the catheter. The control system may be configured to control at least one degree of freedom of the distal tip of the catheter to maintain the working configuration of the distal tip of the catheter based on a selected stiffness mode and the received measurement signals. The selected stiffness mode determines the at least one degree of freedom of the distal tip.
Abstract:
A medical instrument system includes a plurality of joints, a plurality of actuators, and a plurality of transmission systems. The transmission systems have proximal ends respectively coupled to the actuators. Each of the transmission systems have a distal end attached to an associated one of the joints to allow the transmission of a force for articulation of the medical instrument system. The system also includes a sensor coupled to measure a configuration of the medical instrument; and a control system coupled to receive configuration data, including a current configuration of a tip of the medical instrument from the sensor and a desired configuration of the tip of the medical instrument. Using the difference between the desired configuration and the current configuration of the tip of the medical instrument, the control system generates control signals for the actuators that cause the actuators to apply a set of tensions to the plurality of transmission systems.
Abstract:
A medical instrument system includes a plurality of joints, a plurality of actuators, and a plurality of transmission systems. The transmission systems have proximal ends respectively coupled to the actuators. Each of the transmission systems have a distal end attached to an associated one of the joints to allow the transmission of a force for articulation of the medical instrument system. The system also includes a sensor coupled to measure a configuration of the medical instrument; and a control system coupled to receive configuration data, including a current configuration of a tip of the medical instrument from the sensor and a desired configuration of the tip of the medical instrument. Using the difference between the desired configuration and the current configuration of the tip of the medical instrument, the control system generates control signals for the actuators that cause the actuators to apply a set of tensions to the plurality of transmission systems.
Abstract:
A surgical device comprises a tube including a proximal segment and a distal segment and a plurality of force transmission elements coupled to the tube. The force transmission elements are actuatable to alter the distal segment of the tube between a flexible state and a stiffened state. The device also comprises a plurality of routing members. Each routing member is coupled to a wall of the tube. The routing members are configured to receive and route the force transmission elements along a length of the tube while permitting the length of the tube to flex and compress. The device also comprises a decoupling structure that generates a reduced force transmitted to the proximal segment when an applied force is applied to the distal segment by the force transmission elements.
Abstract:
A system comprises a handpiece body configured to couple to a proximal end of a medical instrument and a manual actuator mounted in the handpiece body. The system further includes a plurality of drive inputs mounted in the handpiece body. The drive inputs are configured for removable engagement with a motorized drive mechanism. A first drive component is operably coupled to the manual actuator and also operably coupled to one of the plurality of drive inputs. The first drive component controls movement of a distal end of the medical instrument in a first direction. A second drive component is operably coupled to the manual actuator and also operably coupled to another one of the plurality of drive inputs. The second drive component controls movement of the distal end of the medical instrument in a second direction.
Abstract:
Methods, apparatus, and systems for performing minimally invasive surgery through an aperture of a patient. In accordance with a method, parameters are received from an input device associated with a surgeon, the parameters indicating a desired state of an end effector of a surgical instrument oriented through the aperture. The surgical instrument is included in a mechanical assembly having a first set of joints. Instructions are then computed for controlling the mechanical assembly using the received parameters by computing instructions for controlling a second set joints, the second set of joints including the first set of joints and an additional joint, the additional joint being absent from the mechanical assembly. The mechanical assembly is then driven so as to move the end effector toward the desired state based on the computed instructions.
Abstract:
A surgical device comprises a tube including a proximal segment and a distal segment and a plurality of force transmission elements coupled to the tube. The force transmission elements are actuatable to alter the distal segment of the tube between a flexible state and a stiffened state. The device also comprises a plurality of routing members. Each routing member is coupled to a wall of the tube. The routing members are configured to receive and route the force transmission elements along a length of the tube while permitting the length of the tube to flex and compress. The device also comprises a decoupling structure that generates a reduced force transmitted to the proximal segment when an applied force is applied to the distal segment by the force transmission elements.
Abstract:
Methods, apparatus, and systems for controlling the movement of a mechanical body. In accordance with a method, desired movement information is received that identifies a desired motion of a mechanical body, the mechanical body having a first number of degrees of freedom. A plurality of instructions are then generated by applying the received desired movement information to a kinematic model, the kinematic model having a second number of degrees of freedom greater than the first number of degrees of freedom, each of the instructions being configured to control a corresponding one of the second number of degrees of freedom. A subset of the plurality of instructions are then transmitted for use in controlling the first number of degrees of freedom of the mechanical body.