Abstract:
Robotic devices, systems, and methods for use in robotic surgery and other robotic applications, and/or medical instrument devices, systems, and methods includes both a reusable processor and a limited-use robotic tool or medical treatment probe. A memory the limited-use component includes machine readable code with data and/or programming instructions to be implemented by the processor. Programming of the processor can be updated by shipping of new data once downloaded by the processor from a component, subsequent components can take advantage of the updated processor without repeated downloading.
Abstract:
Robotic devices, systems, and methods for use in robotic surgery and other robotic applications, and/or medical instrument devices, systems, and methods includes both a reusable processor and a limited-use robotic tool or medical treatment probe. A memory the limited-use component includes machine readable code with data and/or programming instructions to be implemented by the processor. Programming of the processor can be updated by shipping of new data once downloaded by the processor from a component, subsequent components can take advantage of the updated processor without repeated downloading.
Abstract:
A teleoperational medical system for performing a medical procedure in a surgical field includes a teleoperational assembly having a plurality of motorized surgical arms configured to assist in a surgical procedure. It also includes an input device configured to receive an input to move all the arms of the plurality of motorized surgical arms to a pre-established position. A processing system is configured to receive the input form the input device and output control signals to each arm of the plurality of motorized surgical arms to move each arm to the pre-established position.
Abstract:
A system and method of aligning with a reference target includes a computer-assisted device. The computer-assisted device includes a link, one or more first joints coupled proximally to the link, an articulated arm comprising one or more second joints coupled distally to the link, the articulated arm configured to couple to an instrument, and a control unit. The control unit is configured to position or orient the link, using the one or more first joints, based on at least one reference of the instrument selected from the group consisting of a reference point associated with the instrument and a reference orientation of the instrument. The control unit is further configured to maintain, while positioning or orienting the link and by using the one or more second joints, a position or an orientation of the instrument relative to a workspace in accordance with the at least one reference of the instrument.
Abstract:
Devices, systems, and methods include a teleoperated system including a kinematic structure having a joint, a drive or brake system for controlling the joint, and a computing unit coupled with the drive or brake system. The computing unit is configured to detect that the joint is between a software defined range of motion limit for the joint and a physical range of motion limit for the joint, the software defined range of motion limit being spaced a distance apart from the physical range of motion limit and delay for a duration of time, in response to detecting the joint between the software defined range of motion limit and the physical range of motion limit, applying the drive or brake system to stop motion of the joint.
Abstract:
Robotic and/or surgical devices, systems, and methods include kinematic linkage structures and associated control systems configured to facilitate preparation of the system for use. In some embodiments, actively driven joints will move a platform structure that supports multiple manipulators in response to movement of one of the manipulators, facilitating and expediting the arrangement of the overall system by moving those multiple manipulators as a unit into alignment with the workspace. Systems and methods are also provided to keep one, some, or all joints of the kinematic chain off a hardstop or physical range of motion limit associated with the joint or to otherwise maintain a desired range of motion for one, some, or all joints of the kinematic chain when exiting a set-up mode.
Abstract:
A method of assigning an auxiliary input device to control a surgical instrument in a robotic surgical system may include detecting a first surgical instrument coupled to a first manipulator interface assembly of a teleoperated surgical system, the manipulator interface assembly being controlled by a first input device; detecting which one of a user's left and right hands operates the first input device; and assigning control of an auxiliary function of the first surgical instrument to a first auxiliary input device disposed in a left position relative to a second auxiliary input device if the user's left hand is detected to operate the first input device, or assigning control of an auxiliary function of the first surgical instrument to a second auxiliary input device disposed in a right position relative to the first auxiliary input device if the user's right hand is detected to operate the first input device. A frame of reference of the left position and right position is relative to a user operating the first input device.
Abstract:
An endoscope captures images of a surgical site for display in a viewing area of a monitor. When a tool is outside the viewing area, a GUI indicates the position of the tool by positioning a symbol in a boundary area around the viewing area so as to indicate the tool position. The distance of the out-of-view tool from the viewing area may be indicated by the size, color, brightness, or blinking or oscillation frequency of the symbol. A distance number may also be displayed on the symbol. The orientation of the shaft or end effector of the tool may be indicated by an orientation indicator superimposed over the symbol, or by the orientation of the symbol itself. When the tool is inside the viewing area, but occluded by an object, the GUI superimposes a ghost tool at its current position and orientation over the occluding object.
Abstract:
Robotic devices, systems, and methods for use in robotic surgery and other robotic applications, and/or medical instrument devices, systems, and methods includes both a reusable processor and a limited-use robotic tool or medical treatment probe. A memory the limited-use component includes machine readable code with data and/or programming instructions to be implemented by the processor. Programming of the processor can be updated by shipping of new data once downloaded by the processor from a component, subsequent components can take advantage of the updated processor without repeated downloading.
Abstract:
A method for a minimally invasive surgical system is disclosed including reading first tool information from a storage device in a first robotic surgical tool mounted to a first robotic arm to at least determine a first tool type; reading equipment information about one or more remote controlled equipment for control thereof; comparing the first tool information with the equipment information to appropriately match a first remote controlled equipment of the one or more remote controlled equipment to the first robotic surgical tool; and mapping one or more user interface input devices of a first control console to control the first remote controlled equipment to support a function of the first robotic surgical tool.