Abstract:
A method for acquiring channel state information is disclosed in the present invention, including: a user equipment (UE) reporting codebook index information and information about the total number of layers to a base station (eNB), wherein the codebook index information includes one of the following information: class 2 codebook index l; and class 1 codebook index i and index parameter j; and after receiving the codebook index information and information about the total number of layers sent by the UE, the base station obtaining a codeword in the manner of inquiring of a preset codebook list or in the manner of inquiring of the preset codebook list in conjunction with calculation according to the codebook index information and information about the total number of layers. A system for acquiring channel state information is also disclosed in the present invention.
Abstract:
Systems and methods are provided for implementing error identification and evaluation for a Reed-Solomon (RS) error-correction code (ECC) system. The BMA algorithm and/or list decoding may produce one or more error locator polynomials that are related to a decision-codeword. An accelerated Chien search can be used to more quickly evaluate the one or more error locator polynomial. If the accelerated Chien search identifies a valid error locator polynomial, a normal Chien search can be used to identify error locations, and Forney's algorithm or an equivalent technique can be used to evaluate the error values. A RS ECC decoder can include a computation circuit that evaluates an error locator polynomial or an error evaluator polynomial. The computation circuit can include computation components that receive the coefficients of the polynomials.
Abstract:
The present invention relates to a lithium ion cathode material lithium iron phosphate having oxygen vacancy and doped in the position of Fe and a preparation method of quick micro-wave sintering for the same. The molecular formula of the product in present invention is expressed as LiFe1-x-aMeaMxPO4-yNz, wherein Me is one or more elements selected from Mg, Mn or Nd, and M is one or more elements selected from Li, Na, K, Ag or Cu; 0≦x≦0.1, 0
Abstract:
The present invention discloses a method for transmitting uplink control signaling in a Physical Uplink Shared Channel (PUSCH). The method includes: when two transport blocks/codewords are transmitted in the PUSCH, mapping uplink control signaling to the layer corresponding to one of the two transport blocks/codewords to transmit. The present invention also discloses an apparatus for transmitting uplink control signaling in the PUSCH. The apparatus includes: a mapping unit, used for mapping uplink control signaling to the layer corresponding to one of two transport blocks/codewords when the two transport blocks/codewords are transmitted in the PUSCH; and a transmission unit, used for transmitting the uplink control signaling. The present invention effectively solves the problem of transmitting uplink control signaling in the PUSCH when the PUSCH uses spatial multiplexing in an LTE-A system.
Abstract:
A decoder memory system comprises a first memory comprising at least a portion of a parity check matrix H. A second memory receives the portion from the first memory and that is associated with a previous decoding iteration. A third memory communicates with the first memory, receives the parity check matrix H and is associated with a current decoding iteration. A fourth memory comprises likelihood ratios. A control module generates a LDPC decoded signal based on the parity check matrix H, the previous decoded iteration and the likelihood ratios.
Abstract:
Systems and methods are provided for implementing list decoding in a Reed-Solomon (RS) error-correction system. A detector can provide a decision-codeword from a channel and can also provide soft-information for the decision-codeword. The soft-information can be organized into an order of combinations of error events for list decoding. An RS decoder can employ a list decoder that uses a pipelined list decoder architecture. The list decoder can include one or more syndrome modification circuits that can compute syndromes in parallel. A long division circuit can include multiple units that operate to compute multiple quotient polynomial coefficients in parallel. The list decoder can employ iterative decoding and a validity test to generate error indicators. The iterative decoding and validity test can use the lower syndromes.
Abstract:
A low Schottky barrier semiconductor structure is provided, comprising: a substrate; a SiGe layer with low Ge content formed on the substrate; a channel layer with high Ge content formed on the SiGe layer; a gate stack formed on the substrate and a side wall of one or more layers formed on both sides of the gate stack; a metal source and a metal drain formed in the channel layer and on the both sides of the gate stack respectively; and an insulation layer formed between the substrate and the metal source and between the substrate and the metal drain respectively.
Abstract:
A personal care composition comprising: a near-terminal branched compound according to Formula I; a cosmetically acceptable aqueous carrier; wherein the near-terminal branched compound is not comprised in a gel network.
Abstract:
A semiconductor structure is provided. The semiconductor structure may comprise a substrate (100); a buffer layer or an insulation layer (200) formed on the substrate; a first strained wide bandgap semiconductor material layer (400) formed on the buffer layer or the insulation layer; a strained narrow bandgap semiconductor material layer (500) formed on the first strained wide bandgap semiconductor material layer; a second strained wide bandgap semiconductor material layer (700) formed on the strained narrow bandgap semiconductor material layer; a gate stack (300) formed on the second strained wide bandgap semiconductor material layer; and a source and a drain (600) formed in the first strained wide bandgap semiconductor material layer, the strained narrow bandgap semiconductor material layer and the second strained wide bandgap semiconductor material layer respectively.
Abstract:
An encoder system includes a receive module that receives a data stream. A parity generation module generates parity bits based on the data stream and a tensor-product code. A parity insertion module combines the parity bits and the data stream to generate encoded bits.