摘要:
Described herein is a monolithic printhead formed using integrated circuit techniques. Thin film layers, including ink ejection elements, are formed on a top surface of a silicon substrate. The various layers are etched to provide conductive leads to the ink ejection elements. At least one ink feed hole is formed through the thin film layers for each ink ejection chamber. A trench is etched in the bottom surface of the substrate so that ink can flow into the trench and into each ink ejection chamber through the ink feed holes formed in the thin film layers. An orifice layer is formed on the top surface of the thin film layers to define the nozzles and ink ejection chambers. A phosphosilicate glass (PSG) layer, providing an insulation layer beneath the resistive layers, is etched back from the ink feed holes and is protected by a passivation layer to prevent the ink from interacting with the PSG layer. Other layers may also be protected from the ink by being etched back.
摘要:
A monolithic inkjet printhead formed using integrated circuit techniques is described. A silicon substrate has formed on its top surface a thin polysilicon layer in the area in which a trench is to be later formed in the substrate. The edges of the polysilicon layer align with the intended placement of ink feed holes leading into ink ejection chambers. Thin film layers, including a resistive layer, are formed on the top surface of the silicon substrate and over the polysilicon layer. An orifice layer is formed on the top surface of the thin film layers to define the nozzles and ink ejection chambers. A trench mask is formed on the bottom surface of the substrate. A trench is etched (using, for example, TMAH) through the exposed bottom surface of the substrate and to the polysilicon layer. The etching of the polysilicon layer exposes fast etch planes of the silicon. The TMAH then rapidly etches the silicon substrate along the etch planes, thus aligning the edges of the trench with the polysilicon. A wet etch is then performed using a buffered oxide etch (BOE) solution. The BOE will completely etch through the exposed thin film layers on the topside and underside of the substrate, forming ink feed holes through the thin film layers. The trench is now aligned with the ink feed holes due to the polysilicon layer.
摘要:
A printhead for an inkjet printer employs an integral pump disposed in an ink feed channel, input well, or output well to circulate ink to the ink expulsion chambers in the printhead.
摘要:
An orifice membrane is provided an articulation parallel to the rows of orifices and between the area of the orifice membrane secured to the cartridge body and the area of the orifice membrane secured to the barrier layer of the heater resistor substrate. The reduced stress at the orifices reduces the distortion of the bore axis of the orifices.
摘要:
An improved ink flow path between an ink reservoir and ink ejection chambers in an inkjet printhead is disclosed along with a preferred printhead architecture. In the preferred embodiment, a barrier layer containing ink channels and firing chambers is located between a rectangular substrate and a nozzle member containing an array of orifices. The substrate contains two spaced apart arrays of ink ejection elements, and each orifice in the nozzle member is associated with a firing chamber and ink ejection element. The ink channels in the barrier layer have ink entrances generally running along two opposite edges of the substrate so that ink flowing around the edges of the substrate gain access to the ink channels and to the firing chambers. High speed printing capability with a firing frequency up to 12 KHz is accomplished by offsetting neighboring ink ejection elements from each other in each primitive grouping in the linear array, combining short shelf length with damped ink inlet channels, and then firing only one ink ejection element at a time in each primitive grouping thereby minimizing undesirable interference such as fluidic crosstalk between closely adjacent ink firing chambers. High resolution printing capability for at least 600 dots-per-inch by the printhead as a whole is accomplished by densely positioning the ink ejection elements in each linear array of ink ejection elements.
摘要:
An inkjet printhead includes a compact substrate having a pair of elongated edge portions for ink channel architecture, a central interior for substrate circuitry, and a pair of truncated end portions for mounting and for electrical interconnects. The ink channel architecture includes a plurality of ink vaporization chambers each having a firing resistor therein, as well as ink feed channels communicating through an ink passage from an underside of the substrate around both edges of the substrate to the vaporization chambers. The central interior portion excludes any ink channel architecture thereby enhancing the structural stability
摘要:
Disclosed is an inkjet print cartridge having an ink reservoir; a substrate having a plurality of individual ink firing chambers with an ink firing element in each chamber along a top surface of the substrate and having a first outer edge along a periphery of substrate; the first outer edge being in close proximity to the ink firing chambers. The ink firing chambers are arranged in a first chamber array and a second chamber array and with the firing chambers spaced so as to provide 600 dots per inch printing. An ink channel connects the reservoir with the ink firing chambers, the channel including a primary channel connected at a first end with the reservoir and at a second end to a secondary channel; the primary channel allowing ink to flow from the ink reservoir, around the first outer edge of the substrate to the secondary channel along the top surface of the substrate so as to be proximate to the ink firing chambers. A separate inlet passage for each firing chamber connecting the secondary channel with the firing chamber for allowing high frequency refill of the firing chamber. A group of the firing chambers in adjacent relationship forming a primitive in which only one firing chamber in the primitive is activated at a time. A first circuit on the substrate connects to the firing elements and a second circuit on the cartridge connects to the first circuit for transmitting firing signals to the ink firing elements at a frequency greater than 9 kHz. When operating the print cartridge, the substrate is able to dissipate more heat, since the ink flowing across the back of the substrate and around the edges of the substrate acts to draw heat away from the back of the substrate.
摘要:
A process for fabricating a thin-film structure using a transparent substrate is disclosed. A first structure, such as a ring having a central pillar, is formed of a conductive material on a surface of the substrate. A photoresist material pillar is formed on top of the conductive material central pillar by exposure through the transparent material. Such structures are useful as mandrel structures in the forming of precision thin-film components such as nozzle plates, mesh filter screens, and the like, for ink-jet pens.
摘要:
A single mask is used to form a tapered nozzle in a polymer nozzle member using laser ablation. In one embodiment of the mask, clear portions of the mask, corresponding to the nozzle pattern to be formed, each incorporate a variable-density dot pattern, where the opaque dots act to partially shield the underlying polymer nozzle member from the laser energy. This partial shielding of the nozzle member under the dot pattern results in the nozzle member being ablated to less of a depth than where there is no shielding. By selecting the proper density of opaque dots around the peripheral portions of the mask openings, the central portion of each nozzle formed in the polymer nozzle member will be completely ablated through, and the peripheral portions of the nozzle will be only partially ablated through. By increasing the density of dots toward the periphery of each mask opening, the resulting nozzle may be formed to have any tapered shape. Other mask patterns are also described.
摘要:
Ink jet print quality is improved and higher pen speed permitted by a bidirectional printing protocol. According to the new protocol, each individual character to be printed is first partitioned into a leading portion and a trailing portion. The trailing portion includes all trailing edge bits. Only the leading portion is printed on a forward pass of the ink jet pen. The trailing portion is printed on a reverse pass of the pen, so that trailing edge ink drops are instead printed as leading edge ink drops. As a result, satellite ink drops are directed toward the center of the character, where they are covered by primary ink drops, thereby minimizing character edge roughness associated with exposed satellite ink drops.