Abstract:
A method of downlink subchannelization in a wireless communication system includes: transmitting a network entry and network discovery information including an open loop (OL) region parameter; and mapping a physical resource unit (PRU) to a contiguous resource unit (CRU) or a distributed resource unit (DRU) with respect to ith frequency partition based on the OL region parameter, wherein a permutation sequence used for mapping a PRU of the ith frequency partition (PRUFPi) to a CRU of the ith frequency partition (CRUFPi) or a DRU of the ith frequency partition (DRUFPi) is determined by a seed value, and the seed value is set to be a particular value according to the value of the OL region parameter.
Abstract:
The present invention relates to a terminal which receives signals from a base station, and to a method in which the terminal receives signals from the base station in a distributed antenna system (DAS). The terminal receives, from the base station having a plurality of antennas, control information on one or more active transmission antennas allocated to the terminal, from among the plurality of antennas, and receives signals from the base station via said one or more active transmission antennas.
Abstract:
Provided is a method for measuring interference by a user equipment (UE) in a multi-node system comprising inside a cell a base station and a plurality of nodes that are controlled by the base station, and the user equipment for same. The method comprises: receiving from the base station a cell-specific interference measurement setting message; and measuring the interference in a resource region indicated by the cell-specific interference measurement setting message, wherein the cell-specific interference measurement setting message is characterized by all of the nodes in the cell comprising information for setting a cell-specific interference measurement region for transmitting a zero-power channel state information (CSI) reference signal (RS).
Abstract:
According to one aspect of the present invention, values which are specifically defined for each user equipment are reflected when resource allocation/mapping of downlink/uplink ACK/NACK channels is performed, so as to vary uplink/downlink ACK/NACK information transmitting resources for each user equipment allocated to the same downlink/uplink resource. According to another aspect of the present invention, nodes for transmitting uplink/downlink ACK/NACK information vary for each user equipment allocated to the same downlink/uplink resource. According to the present invention, even when downlink/uplink signals for a plurality of user equipment are transmitted from the same resource, uplink/downlink ACK/NACK signals of the plurality of user equipment are transmitted from different resources, thereby reducing interferences among ACK/NACK signals of the plurality of user equipment.
Abstract:
A method of performing cooperative transmission in a multi-node system including a Base Station (BS) and a plurality of nodes controlled by the BS is provided. The method comprises: transmitting a first signal generated using a first cell identifier (ID) from the plurality of nodes; and transmitting a second signal generated using a second cell ID from at least one of the plurality of nodes, wherein the first cell ID is identical with a cell ID used by the BS, and the second cell ID is different from the first cell ID.
Abstract:
Method and apparatus of primary cell indication for enhanced control channel demodulation method and apparatus are disclosed. Control information receiving method in a multi-distributed node system includes demodulating a first cell identification (ID) based on a synchronization signal (SS), demodulating information indicating a second cell ID based on a radio resource control (RRC) message and demodulating enhanced physical downlink control channel (e-PDCCH) based on the second cell ID, Accordingly, it may be possible to reduce complexity that occurs when the optimal prediction motion vector is induced and to enhance efficiency.
Abstract:
A method for performing an adaptive modulation and coding scheme in a mobile communication system. Including receiving a signal and selecting a modulation and coding scheme (MCS) level from an MCS subset of an MCS set considering information derived from the signal, by a mobile station. The MCS subset is selected in accordance with a service type related to the mobile station and the MCS subset is configured with one or more MCS levels, the MCS set is represented by 5 bits and the MCS subset is represented by 4 bits to indicate MCS value, respectively, and the 4 bits of the MCS subset is a part of the 5 bits of the MCS set.
Abstract:
A method for efficiently transmitting and receiving downlink control information is disclosed. The method includes, at a base station, receiving feedback information including a precoding matrix index (PMI) from a user equipment (UE) and transmitting precoding information having a predetermined bit number according to the number of antenna ports and a transmission mode of the base station. The precoding information of a predetermined transmission mode in the precoding information includes confirmation information indicating that the base station uses a PMI which is recently received from the UE.
Abstract:
The present invention relates to a method and device for measuring interference in a wireless communication system. User equipment (UE) receives interference measuring indicators form a base station and measures interference based on the interference-measuring indicators by using all or some resource elements (RE) that correspond to zero-power channel state information (CSI) reference signal (RS) configurations.
Abstract:
Disclosed is a method and apparatus for searching for a user equipment searching for a control channel in a multi-node system. The method comprises: searching inside an E-PDCCH region for a first piece of downlink control information (DCI), which is determined according to a transmission mode; and searching inside the E-PDCCH region for a second piece of DCI, regardless of the transmission mode, wherein the E-PDCCH region is a control channel region to which the DCI, which is decoded on the basis of a user equipment-specific reference signal (URS), is transmitted from a subframe comprising a plurality of orthogonal frequency division multiplexing (OFDM) symbols.