Abstract:
A data retransmission method using hybrid automatic repeat request (harq) includes transmitting a data block, receiving a retransmission request signal for the data block, generating a retransmission block by performing swapping or inversion between bits constituting the data block according to the retransmission request signal, and transmitting the retransmission block.
Abstract:
A method and an apparatus of transmitting information in a wireless communication system are provided. The method includes transmitting information based on a first resource index through a first antennae and transmitting the information based on a second resource index through a second antennae.
Abstract:
A method for mapping, by a base station, a channel state information reference signal (CSI RS) in a wireless communication system, the method comprising: generating the CSI for eight antenna ports; selecting a resource element (RE) set from a plurality of RE sets in a subframe using an extended cyclic prefix (CP), wherein the selected RE set includes four pairs of REs in consecutive orthogonal frequency division multiplexing (OFDM) symbols, and wherein the four pairs of REs are separated from each other by constant subcarrier spacing in the consecutive OFDM symbols; and mapping the CSI RS for the eight antenna ports to the selected RE set.
Abstract:
A method of allocating control information in a wireless communication system is provided. The method includes: allocating essential control information of a first system to a first sub-frame in a frame including a plurality of sub-frames each of which comprises a plurality of orthogonal frequency-division multiplexing (OFDM) symbols; and allocating essential control information of a second system to an nth sub-frame in a fixed position from the first sub-frame (where n is an integer satisfying n>1). Accordingly, in a frame supporting heterogeneous systems, essential control information can be fixedly allocated to a specific position while maintaining the number of system switching points, at which switching occurs between the systems, to one even if a radio resource allocation amount changes between the systems, and thus the essential control information that must be received by all user equipments can be effectively provided without the increase of overhead.
Abstract:
A method of transmitting, by a transmitter, information in a wireless communication system, the method includes generating first and second symbols; generating first and second transmit vectors on the basis of an Alamouti code from the first and second symbols; and transmitting the first transmit vector through a first antenna and transmitting the second transmit vector through a second antenna. The first transmit vector consists of a first transmit symbol and a second transmit symbol. The second transmit vector consists of a third transmit symbol and a fourth transmit symbol. The first, second, third, and fourth transmit symbols are transmitted based on first and second resource indexes. The first symbol is a first modulation symbol for first information, and the second symbol is a second modulation symbol for second information.
Abstract:
A method and a user equipment (UE) for transmitting an aperiodic sounding reference signal (SRS) in a wireless communication system are discussed. The method according to an embodiment includes receiving an aperiodic SRS power offset parameter for the aperiodic SRS from a base station (BS) through a radio resource control (RRC) signaling; receiving common parameters for SRSs, including the aperiodic SRS, from the BS through the RRC signaling; setting a transmission power of the aperiodic SRS based on the aperiodic SRS power offset parameter and the common parameters; and transmitting the aperiodic SRS to the BS based on the transmission power of the aperiodic SRS. The aperiodic SRS power offset parameter is a non-common parameter used for transmitting the aperiodic SRS but not a periodic SRS which is included in the SRSs.
Abstract:
A method is provided for transmitting control information from a user equipment in a wireless communication system. Physical downlink shared channels (PDSCHs) are received on a primary cell and a secondary cell configured for the user equipment. Acknowledgement (ACK)/negative acknowledgement (NACK) feedbacks for the received PDSCHs are transmitted using two physical uplink control channel (PUCCH) resources corresponding to a respective one of two antenna ports configured for the user equipment. The two PUCCH resources are used to transmit the same ACK/NACK state.
Abstract:
The present invention relates to a wireless communication system. More particularly, the present invention relates to a method for transmitting acknowledgement/negative ACK (ACK/NACK) in a wireless communication system which supports carrier aggregation, and to an apparatus for the method. A method in which a terminal transmits ACK/NACK in a wireless communication system that supports carrier aggregation comprises the following steps: receiving a physical downlink control channel (PDCCH); receiving a physical downlink shared channel (PDSCH) indicated by the PDCCH; and transmitting ACK/NACK for the PDSCH via a physical uplink control channel (PUCCH). A PUCCH format for transmitting ACK/NACK is selected by taking the number of aggregated carriers into account.
Abstract:
A method for mapping, by a base station, a channel state information reference signal (CSI RS) in a wireless communication system, and a user equipment (UE) for performing the method, are discussed. The method according to one embodiment includes selecting a resource element (RE) set from a plurality of RE sets in a subframe of a time division duplex (TDD) frame, wherein each of the plurality of RE sets includes a pair of consecutive orthogonal frequency division multiplexing (OFDM) symbol elements, and wherein the subframe uses an extended cyclic prefix (CP); and mapping the CSI RS to the selected RE set.
Abstract:
The present invention relates to a relay node device for receiving control information from a base station and a method therefor. The relay node device according to the present invention comprises: a receiver, which receives information about an area where a relay-physical downlink control channel (R-PDCCH), the channel for transmitting control information for the relay node from a base station, is allocated; a processor, which searches for at least one R-PDCCH for the relay node based on the R-PDCCH allocation information received; and an R-PDCCH receiver, which receives the at least one R-PDCCH from the fourth symbol of the first slot in a downlink backhaul subframe of the area where the at least one R-PDCCH searched for by the processor has been allocated.