摘要:
A method and apparatus for testing or diagnosing faults in a scan-based integrated circuit using a unified self-test and scan-test technique. The method and apparatus comprises using a unified test controller to ease prototype debug and production test. The unified test controller further comprises using a capture clock generator and a plurality of domain clock generators each embedded in a clock domain to perform self-test or scan-test. The capture clocks generated by the capture clock generator are used to guide at-speed or reduced-speed self-test (or scan-test) within each clock domain. The frequency of these capture clocks can be totally unrelated to those of system clocks controlling the clock domains. This unified approach allows designers to test or diagnose stuck-type and non-stuck-type faults with a low-cost DFT (design-for-test) tester or a low-cost DFT debugger. A computer-aided design (CAD) method is further developed to realize the method and synthesize the apparatus.
摘要:
A method and apparatus for providing ordered capture clocks to detect or locate faults within N clock domains and faults crossing any two clock domains in a scan-based integrated circuit or circuit assembly in self-test or scan-test mode, where N>1 and each domain has a plurality of scan cells. The method and apparatus will apply an ordered sequence of capture clocks to all scan cells within N clock domains where one or more capture clocks must contain one or more shift clock pulses during the capture operation. A computer-aided design (CAD) method is further developed to realize the method and synthesize the apparatus. In order to further improve the circuit's fault coverage, a CAD method and apparatus are further developed to minimize the memory usage and generate scan patterns for full-scan and feed-forward partial-scan designs containing transparent storage cells, asynchronous set/reset signals, tri-state busses, and low-power gated clocks.
摘要:
A method and apparatus for testing or diagnosing faults in a scan-based integrated circuit using a unified self-test and scan-test technique. The method and apparatus comprises using a unified test controller to ease prototype debug and production test. The unified test controller further comprises using a capture clock generator and a plurality of domain clock generators each embedded in a clock domain to perform self-test or scan-test. The capture clocks generated by the capture clock generator are used to guide at-speed or reduced-speed self-test (or scan-test) within each clock domain. The frequency of these capture clocks can be totally unrelated to those of system clocks controlling the clock domains. This unified approach allows designers to test or diagnose stuck-type and non-stuck-type faults with a low-cost DFT (design-for-test) tester or a low-cost DFT debugger. A computer-aided design (CAD) method is further developed to realize the method and synthesize the apparatus.
摘要:
A test pattern generation method for determining if a combinational portion 17 is defective, by applying test patterns to a semiconductor integrated circuit 10 and comparing responses to the test patterns with expected responses, the method including: a first step of generating test patterns having logic bits for detecting defects and unspecified bits; a second step of selecting critical paths 19, 19a, 19b generated by the application of the test patterns; a third step of identifying critical gates on the critical paths 19, 19a, 19b; and a fourth step of determining unspecified bits so that a critical capture transition metric, which indicates the number of the critical gates whose states are changed, is reduced; wherein by reducing the critical capture transition metric, output delays from the critical paths 19, 19a, 19b are prevented, and thereby false testing can be avoided.
摘要:
A method and apparatus for selectively masking off unknown (‘x’) captured scan data in first selected scan cells 220 from propagating through the scan chains 221 for test, debug, diagnosis, and yield improvement of a scan-based integrated circuit 207 in a selected scan-test mode 232 or selected self-test mode. The scan-based integrated circuit 207 contains a plurality of scan chains 221, a plurality of pattern generators 208, a plurality of pattern compactors 213, with each scan chain 221 comprising multiple scan cells 220, 222 coupled in series. The method and apparatus further includes an output-mask controller 211 and an output-mask network 212 embedded on the scan data input path of second selected scan cells 222, or a set/reset controller controlling selected set/reset inputs of second selected scan cells. A synthesis method is also proposed for synthesizing the output-mask controller 211 and the set/reset controller.
摘要:
The provided are a don't-care-bit identification method and program for identifying don't-care-bits from the first and the second input vectors in an input-vector pair while keeping the sensitization status of paths, in a combinational circuit, sensitized by applying the first and the second input vectors in serial to input lines of combinational circuit. The method identifies an unspecified bit from the first and the second input vectors V1 and V2 composed of logic values 0 and 1, which are applied to the combinational portion in a sequential circuit or to an independent combinational circuit. The method includes an identification step for identifying an unspecified bit from the first and the second input vectors, while keeping sensitization status of a part of or all of the paths, sensitized by applying the first and the second input vectors.
摘要:
Provided are a generation device to reduce launch switching activity, yield loss risk, and power consumption of testing, even in the at-speed scan testing, even with a small number of don't-care (X) bits in input bits as in test compression, without any impact on test data volume, fault coverage, performance, and circuit design, by putting focus on internal lines in the circuit. The generation device includes a target internal line selection unit, a target internal line distinction unit, an identification unit that identifies a bit to be an unspecified bit and a bit to be a logic bit in the input bits, and an assignment unit that assigns a logic value 1 or a logic value 0 to unspecified bits in the input bits. The identification unit includes an unspecified bit identification unit and an input logic bit identification unit.
摘要:
In a combinational portion, when there is one or more unspecified bits in pseudo external input lines and there is no unspecified bit in pseudo external output lines, an assigning operation is carried out. In the combinational portion, when there is one or more unspecified bits in the pseudo external output lines and there is no unspecified bit in the pseudo external input lines, first and second justifying operations are carried out, and a necessary logic value is determined for an unspecified bit of the test cube. In the combinational portion, when there are one more unspecified bits not only in the pseudo external input lines but also the pseudo external output lines, an assigning operation, a justifying operation or first and second assigning/justifying operations are performed upon a focused bit pair.
摘要:
Provided are a conversion device and others for converting a test vector set so as to reduce a logic value difference generated before and after scan capture in outputs of scan cells included in a full scan sequential circuit. A conversion device converts a test vector set corresponding to the full scan sequential circuit. The conversion device comprises a setting unit for setting a candidate bit which can be a don't care bit and a fixed bit which cannot be the don't care bit according to predetermined constraint conditions based on an input-output relationship in the logic circuit in order to identify the don't care bit identifiable as don't care from each test vector of the test vector set, and a logic value deciding unit for deciding a logic value for the don't care bit in view of a relationship in a plurality of bit pairs in relation to a test cube including the don't care bit identified by the setting unit.
摘要:
Provided are a generation device to reduce launch switching activity, yield loss risk, and power consumption of testing, even in the at-speed scan testing, even with a small number of don't-care (X) bits in input bits as in test compression, without any impact on test data volume, fault coverage, performance, and circuit design, by putting focus on internal lines in the circuit. The generation device includes a target internal line selection unit, a target internal line distinction unit, an identification unit that identifies a bit to be an unspecified bit and a bit to be a logic bit in the input bits, and an assignment unit that assigns a logic value 1 or a logic value 0 to unspecified bits in the input bits. The identification unit includes an unspecified bit identification unit and an input logic bit identification unit.