摘要:
The disclosure relates generally to integrated circuit (IC) chip fabrication, and more particularly, to an e-fuse device including an opening, a first via and a second via in an interlayer dielectric, wherein the opening, the first via and the second via are connected to an interconnect below the interlayer dielectric; a dielectric layer that encloses the first via and the second via; and a metal layer over the dielectric layer, wherein the metal layer fills the opening with a metal, and wherein the first via and the second via are substantially empty to allow for electromigration of the interconnect during re-programming of the e-fuse device.
摘要:
Methods of fabricating transistors, semiconductor devices, and structures thereof are disclosed. In one embodiment, a method of fabricating a transistor includes forming a gate dielectric over a workpiece, and forming a gate over the gate dielectric. Sidewall spacers are formed over the gate dielectric and the gate, the sidewall spacers comprising germanium oxide (GeO or GeO2).
摘要:
A method for conducting sub-lithography feature patterning of a device structure is provided. First, a lithographically patterned mask layer that contains one or more mask openings of a diameter d is formed by lithography and etching over an upper surface of the device structure. Next, a layer of a self-assembling block copolymer is applied over the lithographically patterned mask layer and then annealed to form a single unit polymer block of a diameter w inside each of the mask openings, provided that w
摘要:
A method of forming shallow trench isolation (STI) regions for semiconductor devices, the method including defining STI trench openings within a semiconductor substrate; filling the STI trench openings with an initial trench fill material; defining a pattern of nano-scale openings over the substrate, at locations corresponding to the STI trench openings; transferring the pattern of nano-scale openings into the trench fill material so as to define a plurality of vertically oriented nano-scale openings in the trench fill material; and plugging upper portions of the nano-scale openings with additional trench fill material, thereby defining porous STI regions in the substrate.
摘要:
A method is provided for forming a film stack in which a first film including a first polymer is formed on a substrate. A second film, which can include a second polymer other than the first polymer, is formed to have an inner surface disposed on the first film. The second film can have a thickness at which a free energy of the second film would be negative if the second film were disposed directly on the substrate. Desirably, the resulting second film is substantially free of dewetting defects.
摘要:
A photoresist composition and methods using the photoresist composition in multiple exposure/multiple layer processes. The photoresist composition includes a polymer comprising repeat units having a hydroxyl moiety; a photoacid generator; and a solvent. The polymer when formed on a substrate is substantially insoluble to the solvent after heating to a temperature of about 150° C. or greater. One method includes forming a first photoresist layer on a substrate, patternwise exposing the first photoresist layer, forming a second non photoresist layer on the substrate and patterned first photoresist layer. Another method includes forming a first photoresist layer on a substrate, patternwise exposing the first photoresist layer, forming a second photoresist layer on the substrate and patterned first photoresist layer and patternwise exposing the second photoresist layer.
摘要:
A semiconductor structure and method of manufacturing the semiconductor structure, and more particularly to a semiconductor structure having reduced metal line resistance and a method of manufacturing the same in back end of line (BEOL) processes. The method includes forming a first trench extending to a lower metal layer Mx+1 and forming a second trench remote from the first trench. The method further includes filling the first trench and the second trench with conductive material. The conductive material in the second trench forms a vertical wiring line extending orthogonally and in electrical contact with an upper wiring layer and electrically isolated from lower metal layers including the lower metal layer Mx+1. The vertical wiring line decreases a resistance of a structure.
摘要:
An electrical fuse and a first dielectric layer thereupon are formed on a semiconductor substrate. Self-assembling block copolymers containing two or more different polymeric block components are applied into a recessed region surrounded by a dielectric template layer. The self-assembling block copolymers are then annealed to form a pattern of multiple circles having a sublithographic diameter. The pattern of multiple circles is transferred into the first dielectric layer by a reactive ion etch, wherein the portion of the first dielectric layer above the fuselink has a honeycomb pattern comprising multiple circular cylindrical holes. A second dielectric layer is formed over the circular cylindrical holes by a non-conformal chemical vapor deposition and sublithographic cavities are formed on the fuselink. The sublithographic cavities provide enhanced thermal insulation relative to dielectric materials to the fuselink so that the electrical fuse may be programmed with less programming current.
摘要:
A method of designing features on a semiconductor wafer. A design of active or functional features is provided for chiplets separated by kerf areas on the wafer. The method then includes determining pattern density of the chiplet features, and applying a pattern of spaced dummy features on chiplet area not covered by active or functional features, as well as in the kerf areas. The dummy features are uniformly expanded or reduced in size until a desired dummy feature pattern density is reached.
摘要:
Fully and uniformly silicided gate conductors are produced by deeply “perforating” silicide gate conductors with sub-lithographic, sub-critical dimension, nanometer-scale openings. A silicide-forming metal (e.g. cobalt, tungsten, etc.) is then deposited, polysilicon gates, covering them and filling the perforations. An anneal step converts the polysilicon to silicide. Because of the deep perforations, the surface area of polysilicon in contact with the silicide-forming metal is greatly increased over conventional silicidation techniques, causing the polysilicon gate to be fully converted to a uniform silicide composition. A self-assembling diblock copolymer is used to form a regular sub-lithographic nanometer-scale pattern that is used as an etching “template” for forming the perforations.