摘要:
Self-supporting bodies are produced by reactive infiltration of a parent metal into a boron donor material and a carbon donor material. The reactive infiltration typically results in a composite comprising a boron-containing compound, a carbon-containing compound and residual metal, if desired. The mass to be infiltrated may contain one or more inert fillers admixed with the boron donor material and carbon donor material. The relative amounts of reactants and process conditions may be altered or controlled to yield a body containing a wide ranging varying volume percentage of ceramic, metal, and porosity.
摘要:
A self-supporting ceramic composite body produced by a method which comprises preparing a polycrystalline material as the oxidation reaction product of a parent metal with a vapor-phase oxidant, comminuting the resulting material to a particulate, forming a permeable mass of said particulate as filler, and infiltrating said particulate with an oxidation reaction product of a parent metal with a vapor-phase oxidant, thereby forming said ceramic composite body.
摘要:
A method to produce an article of commerce comprising a self-supporting ceramic body by oxidation of a molten parent metal with a vapor-phase oxidant, includes applying to a surface of the parent metal a layer having at least one dopant material therein. The layer is thin relative to the thickness of the ceramic body. Upon heating the parent metal to a molten state in the presence of the oxidant, e.g., air, an oxidation reaction product is formed on the molten metal which, because of the effect of the dopant material, migrates through the growing oxidation reaction product so as to be exposed to the oxidant to form additional oxidation reaction product to and beyond the depth of the applied dopant material layer. Suitable temperature and oxidizing conditions are maintained for a time sufficient to produce a self-supporting ceramic body.
摘要:
The invention comprises a method of making self-supporting ceramic and ceramic composite structures by the oxidation reaction of a body of molten parent metal precursor with a vapor-phase oxidant to form an oxidation reaction product. This reaction or growth is continued to form a thick, self-supporting ceramic or ceramic composite body. The body is recovered and in a separate subsequent operation, at least a portion of a surface is coated with one or more materials in order to effect desired changes in the properties of the surface, e.g., hardness, corrosion resistance.
摘要:
A method of producing self-supporting ceramic composite bodies of desired shape by infiltrating a permeable self supporting preform with polycrystalline matrix material comprising an oxidation reaction product obtained by oxidation of a parent metal precursor, such as aluminum, and optionally containing therein metallic constituents. The composite body is formed by contacting a zone of a permeable self supporting preform, having at least one defined surface boundary spaced from said contacting zone, with a body of molten metal which is reacted with a suitable vapor-phase oxidant to form an oxidation reaction product. Within a certain temperature region, and optionally with one or more dopants in or on the parent metal or said permeable preform, molten parent metal migrates through previously formed oxidation reaction product into contact with the oxidant, causing the oxidation reaction product to grow into the preform toward said defined surface boundary so as to infiltrate the preform up to said defined surface boundary with the oxidation reaction product, and providing the composite structure of desired geometry.
摘要:
A method for producing a self-supporting ceramic composite structure comprising a ceramic matrix embedding a filler, includes oxidizing a parent metal to form a polycrystalline material comprising the oxidation reaction product of the parent metal and, optionally, one or more metallic constituents. The method includes heating the parent metal to provide a source of molten parent metal and a reservoir of molten metal which is in communication with the parent metal having a chemical composition which is different from the parent metal and contacting the molten parent metal with a permeable bedding of filler. The molten parent metal reacts with the oxidant to form the oxidation reaction product and is replenished by the reservoir as the reacting continues for a time sufficient to grow the oxidation reaction product to a desired extent and thereby embed at least a portion of the bedding of filler within the oxidation reaction product to form the ceramic composite structure. The bedding of filler may have any suitable shape, including that of a hollow body, the interior of which is contacted by the molten parent metal to grow the oxidation reaction product through the shaped, hollow body of filler.
摘要:
A method for producing a self-supporting ceramic composite structure, which includes a ceramic matrix embedding a filler, includes oxidizing a parent metal to form a polycrystalline material comprising the oxidation reaction product of the parent metal with an oxidant and, optionally, one or more metallic constituents, and the filler embedded by the matrix. The method includes heating a first source of molten parent metal and a reservoir source of molten parent metal and contacting the first source of molten parent metal with a permeable bedding of filler. The first source of molten parent metal is reacted with the oxidant to form the oxidation reaction product and is replenished from the reservoir as the reacting continues for a time sufficient to grow the oxidation reaction product to a desired extent and thereby embed at least a portion of the bedding of filler within the oxidation reaction product to form the ceramic composite structure. The bedding of filler may have any suitable shape, including that of a hollow body, the interior of which is contacted by the first source of molten parent metal to grow the oxidation reaction product through the shaped, hollow body of filler.
摘要:
A method to produce an article of commerce comprising a self-supporting ceramic body by oxidation of a molten parent metal with a vapor-phase oxidant, includes applying to a surface of the parent metal a layer at least one dopant material therein. The layer is thin relative to the thickness of the ceramic body. Upon heating the parent metal to a molten state in the presence of the oxidant, e.g., air, an oxidation reaction product is formed on the molten metal which, because of the effect of the dopant material, migrates through the growing oxidation reaction product so as to be exposed to the oxidant to form additional oxidation reaction product to and beyond the depth of the applied dopant material layer. Suitable temperature and oxidizing conditions are maintained for a time sufficient to produce a self-supporting ceramic body.
摘要:
A method of producing self-supporting ceramic structures includes providing a first self-supporting ceramic body comprising (i) a polycrystalline oxidation reaction product formed upon oxidation of a first molten parent metal with a first oxidant, and (ii) interconnected porosity at least partially accessible from one or more surfaces of said first ceramic body. A second ceramic body is used to form, by reaction with a vapor-phase oxidant, a second polycrystalline material which is infiltrated into the porosity of at least a zone of said first ceramic body.
摘要:
A method for producing an alumina of high purity, which comprises forming an oxidation reaction product of an aluminum parent metal and an oxygen-containing vapor-phase oxidant, comminuting the resulting ceramic body, and leaching any non-alumina materials therefrom, and recovering said substantially pure alumina material.