摘要:
A semiconductor device includes a trench region extending into a drift zone of a semiconductor body from a surface. The semiconductor device further includes a dielectric structure extending along a lateral side of the trench region, wherein a part of the dielectric structure is a charged insulating structure. The semiconductor device further includes a gate electrode in the trench region and a body region of a conductivity type other than the conductivity type of the drift zone. The charged insulating structure adjoins each one of the drift zone, the body region and the dielectric structure and further adjoins or is arranged below a bottom side of a gate dielectric of the dielectric structure.
摘要:
A lateral HEMT includes a substrate, a first semiconductor layer above the substrate and a second semiconductor layer on the first semiconductor layer. The lateral HEMT further includes a gate electrode, a source electrode, a drain electrode and a rectifying Schottky junction. A first terminal of the rectifying Schottky junction is electrically coupled to the source electrode and a second terminal of the rectifying Schottky junction is electrically coupled to the second semiconductor layer.
摘要:
A semiconductor device including a connecting structure includes an edge region, a first trench and a second trench running toward the edge region, a first electrode within the first trench, and a second electrode within the second trench, the first and second electrodes being arranged in a same electrode plane with regard to a main surface of a substrate of the electronic device within the trenches, and the first electrode extending, at an edge region side end of the first trench, farther toward the edge region than the second electrode extends, at an edge region side end of the second trench, toward the edge region.
摘要:
According to one embodiment, a method for manufacturing a semiconductor device includes forming trenches in a first side of a semiconductor material and forming a thick oxide layer on the trenches and on the first side. A part of the first side and the trenches is masked using a first mask, and the semiconductor material is doped by implantation through the thick oxide layer while the first mask is present. At least part of the thick oxide layer is removed while the first mask remains.
摘要:
A semiconductor component with a drift region and a drift control region. One embodiment includes a semiconductor body having a drift region of a first conduction type in the semiconductor body. A drift control region composed of a semiconductor material, which is arranged, at least in sections, is adjacent to the drift region in the semiconductor body. An accumulation dielectric is arranged between the drift region and the drift control region.
摘要:
A semiconductor component and also a method for producing it are disclosed. In one embodiment, the semiconductor component includes a surface region or a modified doping region is provided alternatively or simultaneously in the edge region of the cell array, in which surface region or modified doping region the doping concentration is lowered and/or in which surface region or modified doping region the conductivity type is formed such that it is opposite to the conductivity type of the actual semiconductor material region, or in which a field plate region is provided.
摘要:
A semiconductor component includes a surface region. A modified doping region is provided in the edge region of the cell array. In the surface region or modified doping region the doping concentration is lowered and/or in the surface region or modified doping region the conductivity type is formed such that it is opposite to the conductivity type of the actual semiconductor material region, or in which a field plate region is provided.
摘要:
A connecting structure for an electronic device includes an edge region of the device, a first trench and a second trench running toward the edge region, a first electrode within the first trench, and a second electrode within the second trench, the first and second electrodes being arranged in a same electrode plane with regard to a main surface of a substrate of the electronic device within the trenches, and the first electrode extending, at an edge region side end of the first trench, farther toward the edge region than the second electrode extends, at an edge region side end of the second trench, toward the edge region.
摘要:
A MOS field plate trench transistor device is disclosed. In one embodiment, in order to obtain a lowest possible on resistance, in the case of a MOS field plate trench transistor device having a body contact hole, it is proposed to form the avalanche breakdown region preferably in an end region of a provided trench structure by virtue of the fact that a mesa region with the body contact region in the semiconductor region as intermediate region in a direction running perpendicular to the first direction and with respect to an adjacent MOS transistor device has a width DMesa, the value of which corresponds to the value of the width DTrench of the trench structure in this direction or exceeds said value and does not go beyond 1.5 times said value, so that the following holds true: DTrench≦DMesa≦1.5·DTrench. As an alternative, the width DMesa is chosen such that the body contact hole precisely still has space, but the breakdown region is in any event shifted into the end region.
摘要翻译:公开了一种MOS场板沟槽晶体管器件。 在一个实施例中,为了获得最低可能的导通电阻,在具有体接触孔的MOS场板沟槽晶体管器件的情况下,优选地在所提供的沟槽结构的端部区域中形成雪崩击穿区域 由于在半导体区域中具有与第一方向垂直的方向作为中间区域并且相对于相邻的MOS晶体管器件的半导体区域的台面区域具有宽度D Sub Mesa SUB >,其值对应于该方向上的沟槽结构的宽度D <沟槽 SUB>的值或超过所述值,并且不超过所述值的1.5倍,使得以下是正确的: SUB> SUB> SUB> SUB> SUB> SUB> SUB> 作为替代方案,选择宽度D Mesa SUB>使得身体接触孔精确地仍然具有空间,但击穿区域在任何情况下都移入端部区域。
摘要:
Disclosed is a semiconductor component arrangement and a method for producing a semiconductor component arrangement. The method comprises producing a trench transistor structure with at least one trench disposed in the semiconductor body and with at least a gate electrode disposed in the at least one trench. An electrode structure is disposed in at least one further trench and comprises an at least one electrode. The at least one trench of the transistor structure and the at least one further trench are produced by common process steps. Furthermore, the at least one electrode of the electrode structure and the gate electrode are produced by common process steps.